Revisions to Test Methods and Testing Regulations

Federal Register, Volume 77 Issue 5 (Monday, January 9, 2012)

Federal Register Volume 77, Number 5 (Monday, January 9, 2012)

Proposed Rules

Pages 1130-1179

From the Federal Register Online via the Government Printing Office www.gpo.gov

FR Doc No: 2011-31234

Page 1129

Vol. 77

Monday,

No. 5

January 9, 2012

Part II

Environmental Protection Agency

-----------------------------------------------------------------------

40 CFR Parts 51, 60, 61, et al.

Revisions to Test Methods and Testing Regulations; Proposed Rule

Page 1130

-----------------------------------------------------------------------

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Parts 51, 60, 61, and 63

EPA-HQ-OAR-2010-0114; FRL-9501-3

RIN 2060-AQ01

Revisions to Test Methods and Testing Regulations

AGENCY: Environmental Protection Agency (EPA).

ACTION: Proposed rule.

-----------------------------------------------------------------------

SUMMARY: This action proposes editorial and technical corrections necessary for source testing of emissions and operations. The revisions include the addition of alternative equipment and methods as well as corrections to technical and typographical errors. We also solicit public comment on potential changes to the current procedures for determining emission stratification.

DATES: Comments must be received on or before March 9, 2012.

Public Hearing. If anyone contacts the EPA by January 19, 2012 requesting to speak at a public hearing, a hearing will be held on February 8, 2012.

ADDRESSES: Submit your comments, identified by Docket ID No. EPA-HQ-

OAR-2010-0114, by one of the following methods:

www.regulations.gov: Follow the on-line instructions for submitting comments.

Email: a-and-r-docket@epa.gov.

Fax: (202) 566-9744.

Mail: Revisions to Test Methods and Testing Regulations, Docket No. EPA-HQ-OAR-2010-0114, Environmental Protection Agency, Mailcode: 2822T, 1200 Pennsylvania Ave. NW., Washington, DC 20460. Please include two copies.

Hand Delivery: Docket No. EPA-HQ-OAR-2010-0114, EPA Docket Center, Public Reading Room, EPA West, Room 3334, 1301 Constitution Ave. NW., Washington, DC 20460. Such deliveries are only accepted during the Docket's normal hours of operation, and special arrangements should be made for deliveries of boxed information.

Instructions: Direct your comments to Docket ID No. EPA-HQ-OAR-

2010-0114. The EPA's policy is that all comments received will be included in the public docket without change and may be made available online at http://www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise protected through www.regulations.gov or email. The www.regulations.gov Web site is an ``anonymous access'' system, which means the EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an email comment directly to the EPA without going through www.regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the public docket and made available on the Internet. If you submit an electronic comment, the EPA recommends that you include your name and other contact information in the body of your comment as well as with any disk or CD-ROM you submit. If the EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, the EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses.

Docket: All documents in the docket are listed in the www.regulations.gov index. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, will be publicly available only in hard copy. Publicly available docket materials are available either electronically in www.regulations.gov or in hard copy at the Revisions to Test Methods and Testing Regulations Docket, EPA/DC, EPA West, Room 3334, 1301 Constitution Ave. NW., Washington, DC 20460. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The telephone number for the Public Reading Room is (202) 566-1744, and the telephone number for the Revisions to Test Methods and Testing Regulations Docket is (202) 566-1742.

FOR FURTHER INFORMATION CONTACT: Mr. Foston Curtis, Office of Air Quality Planning and Standards, Air Quality Assessment Division (E143-

02), Environmental Protection Agency, Research Triangle Park, NC 27711; telephone number: (919) 541-1063; fax number: (919) 541-0516; email address: curtis.foston@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

  1. Does this action apply to me?

    The proposed amendments apply to a large number of industries that are already subject to the current provisions of Parts 51, 60, 61, and 63. Therefore, we have not listed specific affected industries or their North American Industry Classification System (NAICS) codes here. If you have any questions regarding the applicability of this action to a particular entity, consult either the air permitting authority for the entity or your EPA regional representative as listed in 40 CFR 63.13.

  2. What should I consider as I prepare my comments for the EPA?

    1. Submitting CBI. Do not submit this information to the EPA through http://www.regulations.gov or email. Clearly mark any of the information that you claim to be CBI. For CBI information in a disk or CD-ROM that you mail to the EPA, mark the outside of the disk or CD-ROM as CBI and then identify electronically within the disk or CD-ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2.

    2. Tips for Preparing Your Comments. When submitting comments, remember to:

    Follow directions--The Agency may ask you to respond to specific questions or organize comments by referencing a Code of Federal Regulations (CFR) part or section number.

    Explain why you agree or disagree, suggest alternatives, and substitute language for your requested changes.

    Describe any assumptions and provide any technical information and/or data that you used.

    If you estimate potential costs or burdens, explain how you arrived at your estimate in sufficient detail to allow for it to be reproduced.

    Provide specific examples to illustrate your concerns, and suggest alternatives.

    Explain your views as clearly as possible, avoiding the use of profanity or personal threats.

    Make sure to submit your comments by the comment period deadline identified.

  3. Where can I get a copy of this document?

    In addition to being available in the docket, an electronic copy of this proposed rule will also be available on the Worldwide Web (WWW) through the Technology Transfer Network (TTN). Following signature, a copy of

    Page 1131

    this proposed rule will be posted on the TTN's policy and guidance page for newly proposed or promulgated rules at the following address: http://www.epa.gov/ttn/oarpg/. The TTN provides information and technology exchange in various areas of air pollution control. A redline/strikeout document comparing the proposed revisions to the appropriate sections of the current rules is located in the docket.

  4. How is this document organized?

    The supplementary information in this preamble is organized as follows:

    I. General Information

  5. Does this action apply to me?

  6. What should I consider as I prepare my comments for the EPA?

  7. Where can I get a copy of this document?

  8. How is this document organized?

    II. Background

    III. Summary of Amendments

  9. Appendix M of Part 51

  10. Method 201A of Appendix M of Part 51

  11. Method 202 of Appendix M of Part 51

  12. General Provisions (Subpart A) Part 60

  13. Industrial-Commercial-Institutional Steam Generating Units (Subpart Db) Part 60

  14. Hospital/Medical/Infectious Waste Incinerators (Subpart Ec) Part 60

  15. Sulfuric Acid Plants (Subpart H) Part 60

  16. Sewage Treatments Plants (Subpart O) Part 60

    I. Kraft Pulp Mills (Subpart BB) Part 60

  17. Stationary Gas Turbines (Subpart GG) Part 60

  18. Lead-Acid Battery Manufacturing Plants (Subpart KK) Part 60

    L. Metallic Mineral Processing Plants (Subpart LL) Part 60

  19. Asphalt Processing and Asphalt Roofing Manufacture (Subpart UU) Part 60

  20. Volatile Organic Chemical (VOC) Emissions From Synthetic Organic Compound Manufacturing Industry (SOCMI) Distillation Operations (Subpart NNN) Part 60

  21. Stationary Compression Ignition Internal Combustion Engines (Subpart IIII) Part 60

  22. Stationary Spark Ignition Internal Combustion Engines (Subpart JJJJ) Part 60

  23. Method 1 of Appendix A-1 of Part 60

  24. Method 2 of Appendix A-1 of Part 60

  25. Method 2A of Appendix A-1 of Part 60

  26. Method 2B of Appendix A-1 of Part 60

  27. Method 2D of Appendix A-1 of Part 60

    V. Method 3A of Appendix A-2 of Part 60

  28. Method 4 of Appendix A-3 of Part 60

    X. Method 5 of Appendix A-3 of Part 60

  29. Method 5A of Appendix A-3 of Part 60

  30. Method 5E of Appendix A-3 of Part 60

    AA. Method 5H of Appendix A-3 of Part 60

    BB. Method 6 of Appendix A-4 of Part 60

    CC. Method 6C of Appendix A-4 of Part 60

    DD. Method 7 of Appendix A-4 of Part 60

    EE. Method 7A of Appendix A-4 of Part 60

    FF. Method 7E of Appendix A-4 of Part 60

    GG. Method 8 of Appendix A-4 of Part 60

    HH. Method 10 of Appendix A-4 of Part 60

    II. Methods 10A and 10B of Appendix A-4 of Part 60

    JJ. Method 11 of Appendix A-5 of Part 60

    KK. Method 12 of Appendix A-5 of Part 60

    LL. Method 14A of Appendix A-5 of Part 60

    MM. Method 16A of Appendix A-6 of Part 60

    NN. Method 18 of Appendix A-6 of Part 60

    OO. Method 23 of Appendix A-7 of Part 60

    PP. Method 24 of Appendix A-7 of Part 60

    QQ. Method 25 of Appendix A-7 of Part 60

    RR. Method 25C of Appendix A-7 of Part 60

    SS. Method 25D of Appendix A-7 of Part 60

    TT. Method 26 of Appendix A-8 of Part 60

    UU. Method 29 of Appendix A-8 of Part 60

    VV. Method 30B of Appendix A-8 of Part 60

    WW. Performance Specification 1 of Appendix B of Part 60

    XX. Performance Specification 3 of Appendix B of Part 60

    YY. Performance Specification 4 of Appendix B of Part 60

    ZZ. Performance Specification 4B of Appendix B of Part 60

    AAA. Performance Specification 7 of Appendix B of Part 60

    BBB. Performance Specification 11 of Appendix B of Part 60

    CCC. Performance Specification 15 of Appendix B of Part 60

    DDD. Performance Specification 16 of Appendix B of Part 60

    EEE. Procedure 1 of Appendix F of Part 60

    FFF. Procedure 2 of Appendix F of Part 60

    GGG. Procedure 5 of Appendix F of Part 60

    HHH. General Provisions (Subpart

  31. Part 61

    III. Beryllium (Subpart C) Part 61

    JJJ. Beryllium Rocket Motor Firing (Subpart D) Part 61

    KKK. Mercury (Subpart E) Part 61

    LLL. Inorganic Arsenic Emissions from Glass Manufacturing Plants (Subpart N) Part 61

    MMM. Method 101 of Appendix B of Part 61

    NNN. Method 101A of Appendix B of Part 61

    OOO. Method 102 of Appendix B of Part 61

    PPP. Method 104 of Appendix B of Part 61

    QQQ. Methods 108 and 108A of Appendix B of Part 61

    RRR. General Provisions (Subpart

  32. Part 63

    SSS. Synthetic Organic Chemical Manufacturing Industry (Subpart G) Part 63

    TTT. Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks (Subpart N) Part 63

    UUU. Ethylene Oxide Emissions Standards for Sterilization Facilities (Subpart O) Part 63

    VVV. Marine Tank Vessel Loading Operations (Subpart Y) Part 63

    WWW. Aerospace Manufacturing and Rework Facilities (Subpart GG) Part 63

    XXX. Pharmaceuticals Production (Subpart GGG) Part 63

    YYY. Secondary Aluminum Production (Subpart RRR) Part 63

    ZZZ. Manufacturing of Nutritional Yeast (Subpart CCCC) Part 63

    AAAA. Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units (Subpart UUUU) Part 63

    BBBB. Stationary Reciprocating Internal Combustion Engines (Subpart ZZZZ) Part 63

    CCCC. Method 306 of Appendix A of Part 63

    DDDD. Method 306A of Appendix A of Part 63

    EEEE. Methods 308, 315, and 316 of Appendix A of Part 63

    FFFF. Method 321 of Appendix A of Part 63

    IV. Request for Comments

    V. Statutory and Executive Order Reviews

  33. Executive Order 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulations and Regulatory Review

  34. Paperwork Reduction Act

  35. Regulatory Flexibility Act

  36. Unfunded Mandates Reform Act

  37. Executive Order 13132: Federalism

  38. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments

  39. Executive Order 13045: Protection of Children From Environmental Health and Safety Risks

  40. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

    I. National Technology Transfer and Advancement Act

  41. Executive Order 12898: Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations

    II. Background

    The EPA catalogs revisions and updates that are needed for test methods, performance specifications, and associated regulations in 40 CFR parts 51, 60, 61, and 63, and proposes the revisions on a 5- to 10-

    year basis. The last methods update was published as a final rule on October 17, 2000 (65 FR 61744). Many of these needed revisions were brought to our attention by affected parties and end-users. The revisions consist of allowable alternatives that were not previously available, changes that facilitate the use of mercury-free equipment, and updates needed to correct obsolete provisions or add flexibility. Corrections to typographical errors and technical errors in equations and diagrams are also proposed. It is important to note that although numerous technical

    Page 1132

    corrections are being proposed to portions of the subparts in parts 51, 60, 61, and 63, changes are not made to any compliance standard, reporting, or recordkeeping requirement. For this notice, the EPA is only proposing revisions to sections of the subpart pertaining to source testing or monitoring of emissions and operations.

    III. Summary of Amendments

  42. Appendix M of Part 51

    In the introduction of Appendix M of part 51, Methods 3A and 19 would be added to the list of methods not requiring the use of audit samples. Method 3A is a direct measurement instrumental method which the audit program does not evaluate, and Method 19 deals with calculation procedures and not measurement procedures.

  43. Method 201A of Appendix M of Part 51

    Revisions would be made to the Method 201A published on December 21, 2010. Typographical errors in references to isokinetic sampling rate, source gas temperatures, stack blockage dimensions by the sampling heads, and PM10 in Sections 8.3.4(b), 8.3.4.1, 8.7.2.2, and 8.7.5.5(a), respectively, would be corrected. An erroneous reference to Methods 4A and 5 in Section 10.1 when using a standard pitot tube would be corrected to refer to Methods 1 and 2. Section 10.5, which addresses Class A volumetric glassware, would be deleted because it is not needed in the method. For those filters whose weight cannot be weighed to a constant weight in Section 11.2.1, instruction would be added to flag and report the data as a minimum value. It would be noted that the nozzle, front half, and in-stack filter samples need to be speciated into organic and inorganic fractions to be similar to the practice in Method 17. The method would also note that neither Method 17 nor 201A require a separate analysis of the filter for inorganic and organic particulate matter. Method 201A is often used together with Method 202 which requires a separate analysis of inorganic and organic PM. This note would remind testers that a separate analysis is not required for Method 201A. An incorrect term in Equation 9 of Section 12.5 would be corrected. In the nomenclature in Section 12.1, Vb, the volume of aliquot taken for ion chromatography (IC) analysis, would be deleted since no IC analysis is performed.

  44. Method 202 of Appendix M of Part 51

    Revisions would be made to the Method 202 published on December 21, 2010. In Section 8.5.3.1, the text referring to empty impingers would be deleted because empty impingers are not used. Figures 2 and 3 would be revised to correctly show the first impinger with an extended stem instead of a shortened one to be consistent with the method text, and the condensed moisture and sample portion of the sampling train would be labeled to make it easy to identify. Figures 4, 5, and 6 would be republished because they did not print clearly in the December 21, 2010, publication.

  45. General Provisions (Subpart A) Part 60

    In the General Provisions of part 60, Methods 3A and 19 would be added to the list of methods not requiring the use of audit samples in Sec. 60.8(gd). Method 3A is a direct measurement instrumental method which the audit program does not evaluate, and Method 19 deals with calculation procedures in lieu of measurement procedures.

    A new Sec. 60.8(h) would be added to require that sampling sites be evaluated for cyclonic flow and stratification before testing. Cyclonic flow and gas stratification has not been adequately addressed in the past except for particulate measurement methods. Our experience has been that gaseous pollutant measurements may also be affected by these phenomena. Procedures currently used in Methods 1 and 7E would be referenced for all tests to evaluate the suitability of test locations and give procedures for testing under conditions of gas stratification and cyclonic flow to preclude non-representative sampling.

    A new Sec. 60.8(i) would be added to allow the use of Method 205 of 40 CFR part 51, Appendix M, ``Verification of Gas Dilution Systems for Field Instrument Calibrations,'' as an alternative provision whenever the use of multiple calibration gases is required under Part 60. Method 205 has previously been allowed for different applications on a case-by-case basis. Method 205 reduces the number of cylinder gases needed for a test by allowing lower-concentration gases to be generated from a high-level gas. Section 60.13(d)(1) would be revised to remove the phrase ``automatically, intrinsic to the opacity monitor'' which was incorrectly inserted into the paragraph in a past revision. The title of an organization in a method that is incorporated by reference would be updated in Sec. 60.17(e), and the edition of the method referred to in Sec. 60.17(e)(1) would be updated to reflect the currently available version.

  46. Industrial-Commercial-Institutional Steam Generating Units (Subpart Db) Part 60

    In subpart Db, Method 320 would be added as an alternative to the methods for determining nitrogen oxides (NOX) concentration in Sec. 60.46b(f)(1)(ii), (h)(1) and (2), and sulfur dioxide (SO2) concentration in Sec. 60.47b(b)(2). The EPA has allowed the use of Method 320 in the past on a case-by-case basis and now believes it is appropriate for general use.

  47. Hospital/Medical/Infectious Waste Incinerators (Subpart Ec) Part 60

    In subpart Ec, the definition of medical/infectious wastes in Sec. 60.51c would be revised to correct the misspelling of ``cremation.''

  48. Sulfuric Acid Plants (Subpart H) Part 60

    In Subpart H, an equation for calculating the SO2 emission rate in Sec. 60.84(d) would be corrected.

  49. Sewage Treatment Plants (Subpart O) Part 60

    In subpart O, a reference to Method 209F in Sec. 60.154(b)(5) would be revised to reflect a newer available version of the method (i.e., 2540G).

    I. Kraft Pulp Mills (Subpart BB) Part 60

    In subpart BB, a typographical error in the equation in Sec. 60.284(c)(3) would be corrected.

  50. Stationary Gas Turbines (Subpart GG) Part 60

    In subpart GG, the definitions of terms for the equation in Sec. 60.335(b)(l) would be revised to allow the reference combustor inlet absolute pressure to be measured in millimeters of mercury (mm Hg). Using the site barometric pressure gives comparable results to the observed combustor inlet absolute pressure for calculating the mean NOX emission concentration and would be allowed as an alternative.

  51. Lead-Acid Battery Manufacturing Plants (Subpart KK) Part 60

    In subpart KK, Method 29 would be added as an alternative to Method 12 in Sec. 60.374(b)(1)and (c)(2) for determining the lead concentration and flow rate of the effluent gas. Method 29 is an accepted method for determining lead under other rules and is appropriate for this subpart as well. Also, an error in the equation for calculating the lead emission concentration in 60.374(b)(2) would be corrected.

    Page 1133

    L. Metallic Mineral Processing Plants (Subpart LL) Part 60

    In subpart LL, an error in the value of the particulate matter standard in Sec. 60.382(a)(1) would be corrected from 0.02 g/dscm to 0.05 g/dscm. An alternative procedure, where a single visible emission observer may conduct visible emission observations for up to three fugitive, stack, or vent emission points within a 15-second interval, would be added to Sec. 60.386. This alternative would allow the observer to take readings in a more cost-effective and timely manner than currently allowed.

  52. Asphalt Processing and Asphalt Roofing Manufacture (Subpart UU) Part 60

    In subpart UU, an error in the value of the particulate matter standard for saturated felt or smooth-surfaced roll roofing in Sec. 60.472(a)(1)(ii) would be corrected from 0.04 kg/Mg to 0.4 kg/Mg.

  53. Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Operations (Subpart NNN) Part 60

    In subpart NNN, several paragraphs were renumbered in a previous amendment, but conforming changes in sections that referenced these paragraphs were not made. In Sec. 60.660(c)(4) and Sec. 60.665(h)(2) and (3), these references would be corrected.

  54. Stationary Compression Ignition Internal Combustion Engines (Subpart IIII) Part 60

    In Subpart IIII, the use of Method 1 or 1A for sampling point selection would be dropped, and single-point sampling at the centroid of the exhaust would be added. The exhausts of most regulated engines are too small and not equipped with sampling ports. This makes it difficult to divide the exhaust into multiple sampling-point locations as required by Methods 1 and 1A. Table 7 would be revised to delete the requirement to use Method 1 or 1A.

  55. Stationary Spark Ignition Internal Combustion Engines (Subpart JJJJ) Part 60

    In Subpart JJJJ, the exhausts of most regulated engines do not contain sampling ports and are too small to be subdivided into multiple sampling-point locations. Table 2 would be revised to delete the requirement to use Method 1 or 1A for determining sampling site and sampling-point location, and instruction would be added to sample at the centroid of the exhaust.

  56. Method 1 of Appendix A-1 of Part 60

    In Method 1, Section 11.2.2 would be clarified to note that it specifically applies to gaseous measurements. The provisions in the section for determining exhaust gas stratification would be streamlined to make them consistent with the new stratification provisions in Method 7E. Figures 1-1 and 1-2 would be clarified to note that the horizontal coordinates represent the duct diameters from the sampling point to the flow disturbance and not simply the duct diameters from the flow disturbance. Figure 1-2 would also be corrected to show the proper demarcation between the requirement for 12 and 16 sampling points. The test for the presence or absence of cyclonic flow would be required for all tests instead of recommended at sites suspected of having cyclonic flow.

  57. Method 2 of Appendix A-1 of Part 60

    In Method 2, a pressure stability specification that has been lacking for the pitot tube leak-check would be added to clearly note the desired stability. An erroneous reference to a Figure 2-6B would be corrected to reference Figure 2-7B. An error in a term in the denominator of Equation 2-7 would be corrected to the average of the square root of delta P rather than the square root of the average delta P. The velocity constant in English units used in Equation 2-7 would be corrected by changing m/sec to ft/sec. The term for absolute temperature in Equations 2-7 and 2-8 would be corrected to represent the average of the absolute temperatures; an inadvertently omitted term would be added to Section 12.1 for the average absolute temperature; and calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer to facilitate the use of mercury-free products.

  58. Method 2A of Appendix A-1 of Part 60

    In Method 2A, calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer to facilitate the use of mercury-free products.

  59. Method 2B of Appendix A-1 of Part 60

    In Method 2B, nomenclature errors would be corrected and the assumed ambient carbon dioxide concentration used in the calculations would be changed from 300 to 380 ppm to closer approximate current ambient levels.

  60. Method 2D of Appendix A-1 of Part 60

    In Method 2D, calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer to facilitate the use of mercury-free products.

    V. Method 3A of Appendix A-2 of Part 60

    In Method 3A, a redundant sentence noting that pre-cleaned air may be used for the high-level calibration gas would be deleted.

  61. Method 4 of Appendix A-3 of Part 60

    In Method 4, the English value for the leak rate exceedance in Section 9.1 would be corrected from 0.20 cfm to 0.020 cfm. Method 6A, Method 320, and a calculation using F-factors would be added as alternatives to Method 4 for the moisture determination. These are logical alternatives in cases where Methods 6A and 320 are already being used, and the F-factors approach can save both time and expenses in some cases.

    X. Method 5 of Appendix A-3 of Part 60

    In Method 5, a clarification would be added that the deionized water used in the analysis of material caught in the impingers must have i, Co, Qi, and Qo; and procedures for the determination of an alternative tracer gas flow rate would be added.

    BB. Method 6 of Appendix A-4 of Part 60

    In Method 6, calibrating a temperature sensor against a thermometer equivalent to a mercury-in-glass thermometer would be added as an alternative to using a mercury-in-glass thermometer, and calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer. These revisions would facilitate the use of mercury-free products.

    CC. Method 6C of Appendix A-4 of Part 60

    In Section 4.0 of Method 6C, an incorrect reference to Section 4.1 of Method 6 would be corrected to reference Section 4.0 of Method 7E. Provisions that were removed from the original method that addressed potential quenching effects in fluorescence analyzers would be added again. It was previously believed that current fluorescence analyzers are not affected by quenching effects; however, we were informed that the provisions are still needed in many cases.

    DD. Method 7 of Appendix A-4 of Part 60

    In Method 7, procedures would be added to avoid biased results when sampling under conditions of high SO2 concentrations; calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer; and calibrating a temperature sensor against a thermometer equivalent to a mercury-in-glass thermometer would be added as an alternative to using a mercury-in-glass thermometer. These revisions would facilitate the use of mercury-free products.

    EE. Method 7A of Appendix A-4 of Part 60

    In Method 7A, new procedures would be added to avoid biased results when sampling under conditions of high SO2 concentrations, and calibrating a temperature sensor against a thermometer equivalent to a mercury-in-glass thermometer would be added as an alternative to using a mercury-in-glass thermometer to facilitate the use of mercury-

    free products.

    FF. Method 7E of Appendix A-4 of Part 60

    In Method 7E, the instructions for choosing the high-level calibration gas would be clarified. Instructions would be added to minimize contact of the sample with any condensate to reduce the chance of sample loss, and an error in the traverse point locations used to determine stratification across large stacks would be corrected. A statement noting that the stratification test is not required at sources with temporally varying emissions or low-concentration emissions would be added since a stratification test under such conditions would be meaningless or difficult to pass. The basis of a stable response for measurements in the system response time determination would be revised in Section 8.2.5 to conform with Section 8.2.6. The response time reading would be recorded after the concentration reading has reached 95 percent or within 0.5 ppm of a stable response for the gas instead of after reaching 95 percent of the certified gas concentration. This change removes a potential conflict between the response time stable reading criterion and the bias or system calibration error test criterion. Alternative sampling bags made of materials other than Tedlar would be allowed if the materials are applicable for retaining the compounds of interest. Tedlar bags are no longer being produced.

    GG. Method 8 of Appendix A-4 of Part 60

    In Method 8, corrections would be made to errors in the sample aliquot volumes required for containers 1 and 2 and in the values for Va and Vsoln. Figure 8-1 would be clarified to identify which impingers collect sulfuric acid/sulfur trioxide and which collect sulfur dioxide.

    HH. Method 10 of Appendix A-4 of Part 60

    Method 10 would be revised to allow the use of sample tanks as an alternative to flexible bags for sample collection. Tanks are an acceptable collection medium, are currently allowed for carbon monoxide in other EPA methods, and are appropriate for Method 10 as well.

    II. Methods 10A and 10B of Appendix A-4 of Part 60

    In Methods 10A and 10B, sampling bags made of materials other than Tedlar would be allowed if the materials have the sample retaining qualities of Tedlar. Tedlar bags are no longer produced.

    JJ. Method 11 of Appendix A-5 of Part 60

    Method 11 would be revised to address sample breakthrough at high concentrations. An additional collection impinger would be added to the train whenever the final impinger solution exhibits a yellow color. Calibrating a temperature sensor against a thermometer equivalent to a mercury-in-glass thermometer would be added as an alternative to using a mercury-in-glass thermometer to facilitate the use of mercury-free products.

    KK. Method 12 of Appendix A-5 of Part 60

    Method 12 would be revised to allow an analysis by inductively coupled plasma-atomic emission spectrometry (ICP-AES) or cold vapor atomic fluorescence spectrometry (CVAFS) as alternatives to atomic absorption (AA) analysis. The ICP-AES is currently an approved technique for lead analysis in Method 29, and CVAFS offers comparable sensitivity and precision to AA.

    LL. Method 14A of Appendix A-5 of Part 60

    In Section 10.1.1 of Method 14A, we inadvertently referenced Figure 5-6.

    Page 1135

    This reference would be corrected to Figure 5-5.

    MM. Method 16A of Appendix A-6 of Part 60

    In Method 16A, the applicability section would note that method results may be biased low if used at sources other than kraft pulp mills where stack oxygen levels may be lower.

    NN. Method 18 of Appendix A-6 of Part 60

    In Method 18, sampling bags made of materials other than Tedlar would be allowed if the materials are applicable for retaining the compounds of interest. Tedlar bags are no longer produced.

    OO. Method 23 of Appendix A-7 of Part 60

    In Method 23, the requirement in Section 2.2.7 that silica gel be stored in metal containers is unnecessary and would be deleted. Section 4.2.7 would be clarified to note that the used silica gel should be transferred to its original container or other suitable vessel if moisture is being determined. If moisture is not being determined, the spent silica gel may be discarded. Mercury-free thermometers would be added as an alternative to using mercury-in-glass thermometers to facilitate the use of mercury-free products.

    PP. Method 24 of Appendix A-7 of Part 60

    Method 24 would be revised to cite only ASTM Method D2369 and not the specific sections of the method, since the section numbers may change with periodic updates.

    QQ. Method 25 of Appendix A-7 of Part 60

    In Method 25, more detailed information would be added to describe the filters used for sample collection.

    RR. Method 25C of Appendix A-7 of Part 60

    Method 25C would be revised to allow sampling lines made of Teflon. Probes that have closed points and are driven below surface in a single step and withdrawn at a distance to create a gas gap would be allowed as acceptable substitutes to using pilot probes and the auger procedure. An equation for correcting the sample nitrogen concentration for tank dilution would be added as a supplemental calculation option.

    SS. Method 25D of Appendix A-7 of Part 60

    In Method 25D, errors in cross-references within the method would be corrected.

    TT. Method 26 of Appendix A-8 of Part 60

    Method 26 would be revised to allow the use of heated Teflon probes in place of glass-lined probes. Conflicting temperature requirements for the sampling system would be clarified. The note to keep the probe and filter temperature at least 20 degC above the source temperature would be removed because the specification is not needed at higher temperature stacks. The location of the thermocouple that monitors the collected gas temperature would be clarified as being in the gas stream, not the filter box. Method 26A would be an acceptable alternative to Method 26 since the methods are fundamentally similar and give comparable results when determining non-particulate hydrogen halides.

    UU. Method 29 of Appendix A-8 of Part 60

    Method 29 would be revised to allow samples to be analyzed by CVAFS as an alternative to AA analysis since CVAFS is as sensitive and precise as AA.

    VV. Method 30B of Appendix A-8 of Part 60

    In Method 30B, calibrating a barometer against a NIST-traceable barometer would be added as an alternative to calibrating against a mercury barometer to facilitate the use of mercury-free products.

    Table 9-1 and the method text would be revised to amend the quality assurance/quality control criteria for sorbent trap section 2 breakthrough and sample analysis. These revisions would address compliance testing and relative accuracy testing of mercury monitoring systems currently being conducted at much lower emission concentrations.

    For compliance/emissions testing, the specification in Table 9-1 for sample analysis would be revised to require analytical results be within the valid calibration range down to a concentration of 0.01 microg/dscm. This will ensure that measurements at the low levels being measured under recent rulemakings are of known, acceptable, and consistent quality. For relative accuracy testing of mercury monitoring systems, the sample analysis specification in Table 9-1 would remain the same, but the breakthrough criteria for second section in the sorbent traps would be revised to provide additional flexibility where mercury concentrations are less than 0.5 microg/dscm.

    Finally, Method 30B would be revised to include the most up to date citation for determining the method detection limit or MDL.

    WW. Performance Specification 1 of Appendix B of Part 60

    In Performance Specification 1, the terms ``full scale'' and ``span'' would be noted as having the same meaning.

    XX. Performance Specification 3 of Appendix B of Part 60

    In Performance Specification 3, a statement that allows the relative accuracy to be within 20 percent of the reference method would be added to establish the original intent of the rule. This statement was inadvertently deleted in a previous amendment.

    YY. Performance Specification 4 of Appendix B of Part 60

    Performance Specification 4 would be revised to remove the required use of the interference trap specified in Method 10 when evaluating non-dispersive infrared continuous emission monitoring systems against Method 10. This is an old requirement, and the trap is not needed with modern analyzers.

    ZZ. Performance Specification 4B of Appendix B of Part 60

    Performance Specification 4B would be clarified to note that Equation 1 in Section 7.1.1 for calculating calibration error only applies to the carbon monoxide monitor and not the oxygen monitor. It would be noted for the oxygen monitor that the calibration error should be expressed as the oxygen concentration difference between the mean monitor and reference value at three levels.

    AAA. Performance Specification 7 of Appendix B of Part 60

    Performance Specification 7 would be revised to allow Methods 15 and 16 as reference methods in addition to Method 11. Methods 15 and 16 are approved for determining hydrogen sulfide and are appropriate for this application. Methods 15 and 16 are approved EPA reference methods for a number of sources. A pertinent reference would also be added to the references section.

    BBB. Performance Specification 11 of Appendix B of Part 60

    In Performance Specification 11, errors in the denominators of Equations 11-1 and 11-2 would be corrected.

    Page 1136

    CCC. Performance Specification 15 of Appendix B of Part 60

    In Performance Specification 15, the general references to 40 CFR part 60, Appendix B for the relative accuracy analysis procedure would specifically cite Performance Specification 2 of 40 CFR part 60, Appendix B.

    DDD. Performance Specification 16 of Appendix B of Part 60

    Performance Specification 16 would be clarified to answer questions that have arisen since its publication. Retesting a predictive emission monitoring system (PEMS) after a sensor is replaced would be explained more clearly. Allowances would be made for relative accuracy testing at three load or production rate levels in cases where the key operating parameter could not be readily altered. Additional instruction would be added for performing the relative accuracy audit (RAA). An error in the RAA acceptance criterion would be corrected, and an alternative acceptance criterion for low concentration measurements would be added. The yearly relative accuracy test audit would clearly note that the statistical tests in Section 8.3 are not required. An incorrect reference to Equation 16-4 in Section 12.4 would be corrected.

    EEE. Procedure 1 of Appendix F of Part 60

    In Procedure 1, the relevant performance specification would be cited for the RAA calculation instead of using the current Equation 1-1 which is not appropriate for all pollutants.

    FFF. Procedure 2 of Appendix F of Part 60

    In Procedure 2, Equations 2-2 and 2-3 would be revised to have the full-scale value in the denominator, which is more appropriate than the up-scale check value. The denominator of equation 2-4 would be revised to include the volume of the reference device rather than the full-

    scale value. These revisions reflect the original intent of the rule.

    GGG. Procedure 5 of Appendix F of Part 60

    In Procedure 5, the second section listed as Section 6.2.6 would be correctly numbered as Section 6.2.7.

    HHH. General Provisions (Subpart

  62. Part 61

    In the General Provisions of part 61, Methods 3A and 19 would be added to the list of methods not requiring the use of audit samples in Sec. 61.13(e). These methods were inadvertently omitted in the original rule.

    III. Beryllium (Subpart C) Part 61

    In the beryllium National Emission Standards for Hazardous Air Pollutants (NESHAP), Method 29 of part 60 would be added as an alternative to Method 104 in Sec. 61.33(a) for emissions testing since Method 29 is used to determine beryllium under other rules and is appropriate for this subpart as well.

    JJJ. Beryllium Rocket Motor Firing (Subpart D) Part 61

    In the beryllium rocket motor firing NESHAP, a conversion error in the emission standard in Sec. 61.42(a) would be corrected.

    KKK. Mercury (Subpart E) Part 61

    In the mercury NESHAP, Method 29 of part 60 would be added as an alternative to Method 101A in Sec. 61.53(d)(2) for emissions testing since Method 29 is used to determine mercury under other rules and is appropriate for this subpart as well.

    LLL. Inorganic Arsenic Emissions From Glass Manufacturing Plants (Subpart N) Part 61

    In the glass manufacturing plants NESHAP, Method 29 in Appendix A of part 60 would be added as an alternative to Method 108 in Sec. 61.164(d)(2)(i) for determining the arsenic emissions rate and in Sec. 61.164(e)(1)(i) and (e)(2) for determining the arsenic concentration in a gas stream. Method 29 is used to determine arsenic under other rules and is appropriate for this subpart as well.

    MMM. Method 101 of Appendix B of Part 61

    Method 101 would be revised to allow analysis by ICP-AES or CVAFS as alternatives to AA analysis. These techniques are allowed for determining mercury in other approved methods and are appropriate for Method 101 as well. They were not available when Method 101 was promulgated.

    NNN. Method 101A of Appendix B of Part 61

    Method 101A would be revised to allow analysis by ICP-AES or CVAFS as alternatives to AA analysis. These techniques are allowed for determining mercury in other approved methods and are appropriate for Method 101A as well. They were not available when Method 101A was promulgated.

    OOO. Method 102 of Appendix B of Part 61

    In Method 102, mercury-free thermometers would be allowed in place of mercury-in-glass thermometers to facilitate the use of mercury-free products.

    PPP. Method 104 of Appendix B of Part 61

    Method 104 would be revised to allow analysis by ICP-AES as an alternative to AA analysis. This new technique is acceptable for measuring beryllium and was not available when Method 104 was promulgated. A new alternative procedures section would be added to address ICP-AES.

    QQQ. Methods 108 and 108A of Appendix B of Part 61

    Methods 108 and 108A would be revised to allow analysis by ICP-AES as an alternative to AA analysis. This new technique is acceptable for measuring arsenic and was not available when Methods 108 and 108A were promulgated. A new alternative procedures section would be added to address ICP-AES.

    RRR. General Provisions (Subpart

  63. Part 63

    In the General Provisions of part 63, Methods 3A and 19 would be added to the list of methods not requiring the use of audit samples in Sec. 63.7(c). These were inadvertent omissions of the original rule. In Sec. 63.8(f)(6)(iii), an incorrect reference to a section of Performance Specification 2 would be corrected.

    SSS. Synthetic Organic Chemical Manufacturing Industry (Subpart G) Part 63

    Subpart G would be revised to allow the use of Method 8260B in the SW-846 Compendium of Methods or Method 316 to determine hazardous air pollutant concentrations in wastewater streams in Sec. 63.144(b)(5)(i). Both methods are appropriate for this application but were not considered during the original rule development.

    TTT. Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks (Subpart N) Part 63

    South Coast Air Quality Management District Method 205.1 would be added as a testing option for measuring total chromium. Method 205.1 is appropriate for this application, but its application to this rule was not considered during the original rule development.

    UUU. Ethylene Oxide Emissions Standards for Sterilization Facilities (Subpart O) Part 63

    The ethylene oxide emissions standards for sterilization facilities NESHAP would be revised to allow

    Page 1137

    California Air Resources Board (CARB) Method 431 as an alternative to the procedures in Sec. 63.365(b) for determining efficiency at the sterilization chamber vent. Method 431 is appropriate for this application but was not considered during the original rule development. An error in a reference to a section in Performance Specification 8 would also be corrected.

    VVV. Marine Tank Vessel Loading Operations (Subpart Y) Part 63

    The marine tank vessel loading operations NESHAP would be revised to allow Method 25B as an alternative to Method 25A in Sec. 63.565(d)(5) for determining the average volatile organic compound (VOC) concentration upstream and downstream of recovery devices. Method 25B would be allowed as an alternative to Methods 25 and 25A for determining the percent reduction in VOC in Sec. 63.565(d)(8), and the requirement that Method 25B be validated according to Method 301 in Sec. 63.565(d)(10) would be added. Method 25B would also be added as an alternative to Method 25A in determining the baseline outlet VOC concentration in Sec. 63.565(g). Method 25B uses a different detector than Method 25A but gives comparable results to Method 25A in these applications.

    WWW. Aerospace Manufacturing and Rework Facilities (Subpart GG) Part 63

    The aerospace manufacturing and rework facilities NESHAP would be revised to remove an incorrect reference to the location of Method 319 in Sec. 63.750(o).

    XXX. Pharmaceuticals Production (Subpart GGG) Part 63

    The pharmaceuticals production NESHAP would be revised to allow Method 320 as an alternative to Method 18 for demonstrating that a vent is not a process vent. Method 320 is a broadly applicable method that is acceptable in this application because it is self-validating.

    YYY. Secondary Aluminum Production (Subpart RRR) Part 63

    The secondary aluminum production NESHAP would be revised to allow Method 26 as an alternative to Method 26A in Sec. 63.1511(c)(9) for determining hydrochloric acid (HCl) concentration. Method 26 is the non-isokinetic version of Method 26A and is being allowed in all cases where non-isokinetic sampling for HCl is performed.

    ZZZ. Manufacturing of Nutritional Yeast (Subpart CCCC) Part 63

    Table 2 in the manufacturing of nutritional yeast NESHAP would be revised to delete the requirements to use Methods 1, 2, 3, and 4 when measuring VOC by Method 25A. Methods 1, 2, 3, and 4 are required for particulate matter sampling and the VOC in this application is normally not particulate in nature.

    AAAA. Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units (Subpart UUUU) Part 63

    Table 4 in the petroleum refineries: catalytic cracking units, catalytic reforming units, and sulfur recovery units NESHAP would be revised to allow Method 320 as an alternative to Method 18 for determining control device efficiency for organic compounds. Method 320 is a broadly applicable method that is acceptable in this application because it is self-validating.

    BBBB. Stationary Reciprocating Internal Combustion Engines (Subpart ZZZZ) Part 63

    Table 4 in the stationary reciprocating internal combustion engines NESHAP would be revised to clarify that a heated probe is not necessary when using ASTM D6522 to measure oxygen or carbon dioxide concentrations because condensed moisture is normally not an interferent to these compounds. The requirement to use Method 1 or 1A for sampling site and sampling point location would be deleted because the exhausts are small and have temporally varying emissions. Instruction would be added to sample at the centroid of the stack.

    CCCC. Method 306 of Appendix A of Part 63

    Method 306 would be revised to remove references to two figures that do not exist and to add clarifying information about the conditions under which ICP is appropriate for sample analysis. Alternative mercury-free thermometers also would be added as alternatives to mercury-in-glass thermometers to facilitate the use of mercury-free products.

    DDDD. Method 306A of Appendix A of Part 63

    In Method 306A, information would be added to clarify the conditions under which sample filtering is required.

    EEEE. Methods 308, 315, and 316 of Appendix A of Part 63

    In Methods 308, 315, and 316, calibrating a temperature sensor against a thermometer equivalent to a mercury-in-glass thermometer would be added as an alternative to mercury-in-glass thermometers to facilitate the use of non-mercury products. Alternative mercury-free thermometers would be added as an alternative to using a mercury-in-

    glass thermometers.

    FFFF. Method 321 of Appendix A of Part 63

    In Method 321, the term for dilution factor in the calculations would be clarified.

    IV. Request for Comments

    The agency is reviewing the adequacy of its current test methods in regard to sampling site selection and sampling point requirements. Emission gas flow patterns affect representative testing, and this is not addressed in many EPA test methods. Method 1 contains provisions for sampling point locations, traversing, and determination of cyclonic flow, and Method 7E was revised to contain procedures for determining gaseous stratification in 2006. However, there are no requirements in most methods to follow the Method 1 or 7E procedures.

    Method 7E allows stratification to be assessed through either a 3- or 12-point traverse while measuring variations in either a pollutant or diluent concentration. The degree of stratification determines whether a single-point, 3-, or 12-point traverse is used for the test. There are no requirements to check for cyclonic flow in Method 7E.

    We have information that suggests deficiencies exist in the 3-point test in a number of cases and that at least a 5-point, dual axis test should be required. A summary of this information has been included in the regulatory docket. We are also reconsidering the appropriateness of a diluent gas for the test instead of the regulated pollutant.

    In this proposed rule, we would update the General Provisions of Parts 60, 61, and 63 to include evaluations of gas stratification and cyclonic flow with all compliance tests. The agency solicits your comments and data to aid in establishing better procedures.

    Page 1138

    V. Statutory and Executive Order Reviews

  64. Executive Order 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulation and Regulatory Review

    This action is not a ``significant regulatory action'' under the terms of Executive Order (EO) 12866 (58 FR 51735, October 4, 1993) and is therefore not subject to review under Executive Orders 12866 and 13563 (76 FR 3821, January 21, 2011).

  65. Paperwork Reduction Act

    This action does not impose an information collection burden under the provisions of the Paperwork Reduction Act, 44 U.S.C. 3501 et seq. Burden is defined at 5 CFR 1320.3(b). The amendments being proposed in this action to the test methods and testing regulations do not add information collection requirements but make needed corrections and updates to existing testing methodology.

  66. Regulatory Flexibility Act

    The Regulatory Flexibility Act (RFA) generally requires an agency to prepare a regulatory flexibility analysis of any rule subject to notice and comment rulemaking requirements under the Administrative Procedure Act or any other statute unless the agency certifies that the rule will not have a significant economic impact on a substantial number of small entities. Small entities include small businesses, small organizations, and small governmental jurisdictions.

    For purposes of assessing the impacts of this rule on small entities, small entity is defined as (1) A small business as defined by the Small Business Administration's (SBA) regulations at 13 CFR 121.201; (2) a small governmental jurisdiction that is a government of a city, county, town, school district or special district with a population of less than 50,000; and (3) a small organization that is any not-for-profit enterprise which is independently owned and operated and is not dominant in its field.

    After considering the economic impacts of this rule on small entities, I certify that this action will not have a significant economic impact on a substantial number of small entities. This proposed rule will neither impose emission measurement requirements beyond those specified in the current regulations, nor will it change any emission standard. This proposed action will not impose any new requirements on small entities. We continue to be interested in the potential impacts of the proposed rule on small entities and welcome comments on issues related to such impacts.

  67. Unfunded Mandates Reform Act

    This action contains no Federal mandates under the provisions of Title II of the Unfunded Mandates Reform Act of 1995 (UMRA), 2 U.S.C. 1531-1538 for State, local, or tribal governments or the private sector. The action imposes no enforceable duty on any State, local or tribal governments or the private sector. Therefore, this action is not subject to the requirements of sections 202 or 205 of the UMRA. This action is also not subject to the requirements of section 203 of UMRA because it contains no regulatory requirements that might significantly or uniquely affect small governments. This action corrects and updates current testing regulations and does not add any new requirements.

  68. Executive Order 13132: Federalism

    This action does not have federalism implications. It will not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government, as specified in Executive Order 13132. This action simply corrects minor errors and makes updates to current source testing methods to maintain their original intent. Thus, Executive Order 13132 does not apply to this action. In the spirit of Executive Order 13132, and consistent with the EPA policy to promote communications between the EPA and State and local governments, the EPA specifically solicits comment on this proposed rule from State and local officials.

  69. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments

    This action does not have tribal implications, as specified in Executive Order 13175 (65 FR 67249, November 9, 2000). This proposed rule imposes no requirements on tribal governments. This action simply corrects and updates current testing regulations. Thus, Executive Order 13175 does not apply to this action. The EPA specifically solicits additional comment on this proposed action from tribal officials.

  70. Executive Order 13045: Protection of Children From Environmental Health and Safety Risks

    The EPA interprets EO 13045 (62 FR 19885, April 23, 1997) as applying only to those regulatory actions that concern health or safety risks, such that the analysis required under section 5-501 of the EO has the potential to influence the regulation. This action is not subject to EO 13045 because it does not establish an environmental standard intended to mitigate health or safety risks.

  71. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

    This action is not subject to Executive Order 13211 (66 FR 28355 (May 22, 2001)), because it is not a significant regulatory action under Executive Order 12866.

    I. National Technology Transfer and Advancement Act

    Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C. 272 note) directs the EPA to use voluntary consensus standards in its regulatory activities unless to do so would be inconsistent with applicable law or otherwise impractical. Voluntary consensus standards are technical standards (e.g., materials specifications, test methods, sampling procedures, and business practices) that are developed or adopted by voluntary consensus standards bodies. NTTAA directs the EPA to provide Congress, through OMB, explanations when the Agency decides not to use available and applicable voluntary consensus standards.

    This proposed rulemaking involves technical standards. The EPA proposes to use ASTM D975-076, developed and adopted by the American Society for Testing and Materials (ASTM). This standard may be obtained from ASTM at 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959. ASTM D975-076 has been determined to be at least as stringent as currently required ASTM D396 for defining ``distillate oil.'' ASTM D975-076 is required in some State permits for this purpose and end users have asked that it be allowed as an alternative to D396 under 40 CFR 60.41c.

  72. Executive Order 12898: Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations

    Executive Order (EO) 12898 (59 FR 7629 (Feb. 16, 1994)) establishes Federal executive policy on environmental justice. Its main provision directs Federal agencies, to the greatest extent practicable and permitted by law, to make environmental justice part of their mission by identifying and addressing, as appropriate, disproportionately high

    Page 1139

    and adverse human health or environmental effects of their programs, policies, and activities on minority populations and low-income populations in the United States.

    The EPA has determined that this proposed rule will not have disproportionately high and adverse human health or environmental effects on minority or low-income populations because it does not affect the level of protection provided to human health or the environment. This rule corrects and updates current testing regulations and does not cause emission increases from regulated sources.

    Revisions to Test Methods and Testing Regulations

    List of Subjects in 40 CFR Parts 51, 60, 61, and 63

    Environmental protection, Air pollution control, Test methods and procedures, and Performance specifications.

    Dated: November 29, 2011.

    Lisa P. Jackson,

    Administrator.

    For the reasons stated in the preamble, the Environmental Protection Agency proposes to amend title 40, chapter I of the Code of Federal Regulations as follows:

    PART 51--REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS

    1. The authority citation for part 51 continues to read as follows:

      Authority: 23 U.S.C. 101; 42 U.S.C. 7401-7671q.

    2. Amend Appendix M by revising section 4a. to read as follows:

      Appendix M to Part 51--Recommended Test Methods for State Implementation Plans

      * * * * *

    3. * * *

      1. The source owner, operator, or representative of the tested facility shall obtain an audit sample, if commercially available, from an AASP for each test method used for regulatory compliance purposes. No audit samples are required for the following test methods: Methods 3A and 3C of Appendix A-3 of Part 60, Methods 6C, 7E, 9, and 10 of Appendix A-4 of Part 60, Methods 18 and 19 of Appendix A-6 of Part 60, Methods 20, 22, and 25A of Appendix A-7 of Part 60, and Methods 303, 318, 320, and 321 of Appendix A of Part 63. If multiple sources at a single facility are tested during a compliance test event, only one audit sample is required for each method used during a compliance test. The compliance authority responsible for the compliance test may waive the requirement to include an audit sample if they believe that an audit sample is not necessary. ``Commercially available'' means that two or more independent AASPs have blind audit samples available for purchase. If the source owner, operator, or representative cannot find an audit sample for a specific method, the owner, operator, or representative shall consult the EPA Web site at the following URL, http://www.epa.gov/ttn/emc, to confirm whether there is a source that can supply an audit sample for that method. If the EPA Web site does not list an available audit sample at least 60 days prior to the beginning of the compliance test, the source owner, operator, or representative shall not be required to include an audit sample as part of the quality assurance program for the compliance test. When ordering an audit sample, the source owner, operator, or representative shall give the sample provider an estimate for the concentration of each pollutant that is emitted by the source or the estimated concentration of each pollutant based on the permitted level and the name, address, and phone number of the compliance authority. The source owner, operator, or representative shall report the results for the audit sample along with a summary of the emission test results for the audited pollutant to the compliance authority and shall report the results of the audit sample to the AASP. The source owner, operator, or representative shall make both reports at the same time and in the same manner or shall report to the compliance authority first and report to the AASP. If the method being audited is a method that allows the samples to be analyzed in the field and the tester plans to analyze the samples in the field, the tester may analyze the audit samples prior to collecting the emission samples provided a representative of the compliance authority is present at the testing site. The tester may request and the compliance authority may grant a waiver to the requirement that a representative of the compliance authority must be present at the testing site during the field analysis of an audit sample. The source owner, operator, or representative may report the results of the audit sample to the compliance authority and then report the results of the audit sample to the AASP prior to collecting any emission samples. The test protocol and final test report shall document whether an audit sample was ordered and utilized and the pass/fail results as applicable.

      * * * * *

    4. Amend Method 201A of Appendix M as follows:

      1. By revising sections 8.3.4(b) and 8.3.4.1.

      2. By revising sections 8.7.2.2 and 8.7.5.5(a).

      3. By revising the introductory text of section 10.1.

      4. By revising section 11.2.1.

      5. By revising Equation 9 in section 12.5.

      6. By removing section 10.5.

      7. By removing the term ``Vb'' and its definition from section 12.1.

        Method 201A--Determination of PM10 and PM2.5 Emissions From Stationary Sources (Constant Sampling Rate Procedure)

        * * * * *

        8.3.4 * * *

        (b) The appropriate nozzle to maintain the required gas sampling rate for the velocity pressure range and isokinetic range. If the isokinetic range cannot be met (e.g., batch processes, extreme process flow or temperature variation), void the sample or use methods subject to the approval of the Administrator to correct the data. The acceptable variation from isokinetic sampling is 80 to 120 percent and no more than 100 21 percent (2 out of 12 or 5 out of 24) sampling points outside of this criteria.

        * * * * *

        8.3.4.1 Preliminary traverse. You must use an S-type pitot tube with a conventional thermocouple to conduct the traverse. Conduct the preliminary traverse as close as possible to the anticipated testing time on sources that are subject to hour-by-hour gas flow rate variations of approximately 20 percent and/or gas temperature variations of approximately 10 degC ( 18; degF). (Note: You should be aware that these variations can cause errors in the cyclone cut diameters and the isokinetic sampling velocities.)

        * * * * *

        8.7.2.2 Probe blockage factor. You must use Equation 26 to calculate an average probe blockage correction factor (bf) if the diameter of your stack or duct is between 25.7 and 36.4 inches for the combined PM2.5/

        PM10 sampling head and pitot and between 18.8 and 26.5 inches for the PM2.5 cyclone and pitot. A probe blockage factor is calculated because of the flow blockage caused by the relatively large cross-sectional area of the cyclone sampling head, as discussed in Section 8.3.2.2 and illustrated in Figures 8 and 9 of Section 17. You must determine the cross-sectional area of the cyclone head you use and determine its stack blockage factor. (Note: Commercially-available sampling heads (including the PM10 cyclone, PM2.5 cyclone, pitot and filter holder) have a projected area of approximately 31.2 square inches when oriented into the gas stream. As the probe is moved from the outermost to the innermost point, the amount of blockage that actually occurs ranges from approximately 13 square inches to the full 31.2 inches plus the blockage caused by the probe extension. The average cross-sectional area blocked is 22 square inches.

        * * * * *

        8.7.5.5 * * *

        (

      8. Container 1, Less than or equal to PM2.5 micrometer filterable particulate. Use tweezers and/or clean disposable surgical gloves to remove the filter from the filter holder. Place the filter in the Petri dish that you labeled with the test identification and Container 1. Using a dry brush and/

        or a sharp-edged blade, carefully transfer any PM and/or filter fibers that adhere to the filter holder gasket or filter support screen to the Petri dish. Seal the container. This container holds particles less than or equal to 2.5 micrometers that are caught on the in-stack

        Page 1140

        filter. (Note: If the test is conducted for PM10 only, then Container 1 would be for less than or equal to PM10 micrometer filterable particulate.)

        * * * * *

        10.1 Gas Flow Velocities. You must use an S-type pitot tube that meets the required EPA specifications (EPA Publication 600/4-77-

        0217b) during these velocity measurements. (Note: If, as specified in Section 8.7.2.3, testing is performed in stacks less than 26.5 inches in diameter, testers may use a standard pitot tube according to the requirements in Method 1 or 2 of Appendix A-3 to Part 60.) You must also complete the following:

        * * * * *

        11.2.1 Container 1, Less than or Equal to PM2.5 Micrometer Filterable Particulate. Transfer the filter and any loose particulate from the sample container to a tared weighing dish or pan that is inert to solvent or mineral acids. Desiccate for 24 hours in a desiccator containing anhydrous calcium sulfate. Weigh to a constant weight and report the results to the nearest 0.1 mg. (See Section 3.0 for a definition of constant weight.) If constant weight requirements cannot be met, data should be reported and flagged as a minimum value. (Note: Regardless of the stack temperature, you are not required to speciate the Method 201A nozzle, front half or in-stack filter sample into organic and inorganic fractions. Neither Method 17 nor 201A require separate analysis of the filter for inorganic and organic PM. Since the in-

        stack filter samples collected at re greater than or equal to 3,162:

        GRAPHIC TIFF OMITTED TP09JA12.018

        * * * * *

    5. Amend Method 202 of Appendix M as follows:

      1. By revising the introductory text in section 8.5.3.1.

      2. By revising section 11.2.2.

      3. By revising Figures 2, 3, 4, 5, and 6 in section 18.0.

      Method 202--Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources

      * * * * *

      8.5.3.1 If you choose to conduct a pressurized nitrogen purge on the complete CPM sampling train, you may quantitatively transfer the water collected in the condenser and the water dropout impinger to the backup impinger as an alternative to replacing the short stem impinger insert with a long stem insert prior to purging the sampling train. You must measure the water combined in the backup impinger and record the volume or weight as part of the moisture collected during sampling as specified in Section 8.5.3.4.

      * * * * *

      11.2.2 CPM Container 1, Aqueous Liquid Impinger Contents. Analyze the water soluble CPM in Container 1 as described in this section. Place the contents of Container 1 into a separatory funnel. Add approximately 30 ml of hexane to the funnel, mix well, and pour off the upper organic phase. Repeat this procedure twice with 30 ml of hexane each time combining the organic phase from each extraction. Each time, leave a small amount of the organic/hexane phase in the separatory funnel, ensuring that no water is collected in the organic phase. This extraction should yield about 90 ml of organic extract. Combine the organic extract from Container 1 with the organic train rinse in Container 2.

      * * * * *

      BILLING CODE 6560-50-P

      Page 1141

      GRAPHIC TIFF OMITTED TP09JA12.019

      Page 1142

      GRAPHIC TIFF OMITTED TP09JA12.020

      Page 1143

      GRAPHIC TIFF OMITTED TP09JA12.021

      GRAPHIC TIFF OMITTED TP09JA12.022

      Page 1144

      GRAPHIC TIFF OMITTED TP09JA12.023

      * * * * *

      BILLING CODE 6560-50-C

      PART 60--STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

    6. The authority citation for part 60 continues to read as follows:

      Authority: 42 U.S.C. 7401, et seq.

    7. Amend Sec. 60.8 by revising paragraph (g)(1) and adding new paragraphs (h) and (i) to read as follows:

      Sec. 60.8 Performance tests.

      * * * * *

      (g) * * *

      (1) The source owner, operator, or representative of the tested facility shall obtain an audit sample, if commercially available, from an AASP for each test method used for regulatory compliance purposes. No audit samples are required for the following test methods: Methods 3A and 3C of Appendix A-3 of Part 60, Methods 6C, 7E, 9, and 10 of Appendix A-4 of Part 60, Methods 18 and 19 of Appendix A-6 of Part 60, Methods 20, 22, and 25A of Appendix A-7 of Part 60, and Methods 303, 318, 320, and 321 of Appendix A of Part 63. If multiple sources at a single facility are tested during a compliance test event, only one audit sample is required for each method used during a compliance test. The compliance authority responsible for the compliance test may waive the requirement to include an audit sample if they believe that an audit sample is not necessary. ``Commercially available'' means that two or more independent AASPs have blind audit samples available for purchase. If the source owner, operator, or representative cannot find an audit sample for a specific method, the owner, operator, or representative shall consult the EPA Web site at the following URL, www.epa.gov/ttn/emc, to confirm whether there is a source that can supply an audit sample for that method. If the EPA Web site does not list an available audit sample at least 60 days prior to the beginning of the compliance test, the source owner, operator, or representative shall not be required to include an audit sample as part of the quality assurance program for the compliance test. When ordering an audit sample, the source owner,

      Page 1145

      operator, or representative shall give the sample provider an estimate for the concentration of each pollutant that is emitted by the source or the estimated concentration of each pollutant based on the permitted level and the name, address, and phone number of the compliance authority. The source owner, operator, or representative shall report the results for the audit sample along with a summary of the emission test results for the audited pollutant to the compliance authority and shall report the results of the audit sample to the AASP. The source owner, operator, or representative shall make both reports at the same time and in the same manner or shall report to the compliance authority first and then report to the AASP. If the method being audited is a method that allows the samples to be analyzed in the field and the tester plans to analyze the samples in the field, the tester may analyze the audit samples prior to collecting the emission samples provided a representative of the compliance authority is present at the testing site. The tester may request, and the compliance authority may grant, a waiver to the requirement that a representative of the compliance authority must be present at the testing site during the field analysis of an audit sample. The source owner, operator, or representative may report the results of the audit sample to the compliance authority and report the results of the audit sample to the AASP prior to collecting any emission samples. The test protocol and final test report shall document whether an audit sample was ordered and utilized and the pass/fail results as applicable.

      * * * * *

      (h) Unless otherwise specified in the applicable subpart, each test location must be verified to be free of cyclonic flow and evaluated for the existence of emission gas stratification and the required number of sampling traverse points. If other procedures are not specified in the applicable subpart to the regulations, use the appropriate procedures in Method 1 to check for cyclonic flow and Method 7E to evaluate emission gas stratification and selection of sampling points.

      (i) Whenever the use of multiple calibration gases is required by a test method, performance specification, or quality assurance procedure in a Part 60 standard or appendix, Method 205 of 40 CFR part 51, Appendix M, ``Verification of Gas Dilution Systems for Field Instrument Calibrations,'' may be used.

    8. Amend Sec. 60.13 by revising paragraph (d)(1) to read as follows:

      Sec. 60.13 Monitoring requirements.

      * * * * *

      (d)(1) Owners and operators of a CEMS installed in accordance with the provisions of this part, must check the zero (or low level value between 0 and 20 percent of span value) and span (50 to 100 percent of span value) calibration drifts at least once daily in accordance with a written procedure. The zero and span must, at a minimum, be adjusted whenever either the 24-hour zero drift or the 24-hour span drift exceeds two times the limit of the applicable performance specification in Appendix B of this part. The system must allow the amount of the excess zero and span drift to be recorded and quantified whenever specified. Owners and operators of a COMS installed in accordance with the provisions of this part must check the zero and upscale (span) calibration drifts at least once daily. For a particular COMS, the acceptable range of zero and upscale calibration materials is defined in the applicable version of PS-1 in Appendix B of this part. For a COMS, the optical surfaces, exposed to the effluent gases, must be cleaned before performing the zero and upscale drift adjustments, except for systems using automatic zero adjustments. The optical surfaces must be cleaned when the cumulative automatic zero compensation exceeds 4 percent opacity.

      * * * * *

    9. Amend Sec. 60.17 by revising paragraphs (e) and (e)(1) to read as follows:

      Sec. 60.17 Incorporations by reference.

      * * * * *

      (e) The following material is available for purchase from the Water Environment Federation, 2626 Pennsylvania Avenue NW., Washington, DC 20037.

      (1) Method 209A, Total Residue Dried at 103-105 degC, in Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1999, IBR approved February 25, 1985, for Sec. 60.683(b).

      * * * * *

    10. Amend Sec. 60.46b by revising paragraphs (f)(1)(ii) and (h)(1) and (2) to read as follows:

      Sec. 60.46b Compliance and performance test methods and procedures for particulate matter and nitrogen oxides.

      * * * * *

      (f) * * *

      (1) * * *

      (ii) Method 7E of Appendix A of this part or Method 320 of Appendix A of Part 63 shall be used to determine the NOX concentrations. Method 3A or 3B of Appendix A of this part shall be used to determine O2 concentration.

      * * * * *

      (h) * * *

      (1) Conduct an initial performance test as required under Sec. 60.8 over a minimum of 24 consecutive steam generating unit operating hours at maximum heat input capacity to demonstrate compliance with the NOX emission standards under Sec. 60.44b using Method 7, 7A, or 7E of Appendix A of this part, Method 320 of Appendix A of Part 63, or other approved reference methods; and

      (2) Conduct subsequent performance tests once per calendar year or every 400 hours of operation (whichever comes first) to demonstrate compliance with the NOX emission standards under Sec. 60.44b over a minimum of 3 consecutive steam generating unit operating hours at maximum heat input capacity using Method 7, 7A, or 7E of Appendix A of this part, Method 320 of Appendix A of Part 63, or other approved reference methods.

      * * * * *

    11. Amend Sec. 60.47b by revising paragraph (b)(2) to read as follows:

      Sec. 60.47b Emission monitoring for sulfur dioxide.

      * * * * *

      (b) * * *

      (2) Measuring SO2 according to Method 6B of Appendix A of this part at the inlet or outlet to the SO2 control system. An initial stratification test is required to verify the adequacy of the sampling location for Method 6B of Appendix A of this part. The stratification test shall consist of three paired runs of a suitable SO2 and CO2 measurement train operated at the candidate location and a second similar train operated according to the procedures in Section 3.2 and the applicable procedures in Section 7 of Performance Specification 2. Method 6B of Appendix A of this part, Method 6A of Appendix A of this part, or a combination of Methods 6 and 3 or 3B of Appendix A of this part or Methods 6C or Method 320 of Appendix A of Part 63 and 3A of Appendix A of this part are suitable measurement techniques. If Method 6B of Appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of Appendix A of this part, 24-hour tests, the mean of the absolute

      Page 1146

      difference between the three paired runs must be less than 10 percent.

      * * * * *

    12. Amend Sec. 60.51c by revising the definition of ``Medical/

      infectious waste'' to read as follows:

      Sec. 60.51c Definitions.

      * * * * *

      Medical/infectious waste means any waste generated in the diagnosis, treatment, or immunization of human beings or animals, in research pertaining thereto, or in the production or testing of biologicals that are listed in paragraphs (1) through (7) of this definition. The definition of medical/infectious waste does not include hazardous waste identified or listed under the regulations in part 261 of this chapter; household waste, as defined in Sec. 261.4(b)(1) of this chapter; ash from incineration of medical/infectious waste, once the incineration process has been completed; human corpses, remains, and anatomical parts that are intended for interment or cremation; and domestic sewage materials identified in Sec. 261.4(a)(1) of this chapter.

      * * * * *

    13. Amend Sec. 60.84 by revising the equation in paragraph (d) to read as follows:

      Sec. 60.84 Emission monitoring.

      * * * * *

      (d) * * *

      Es = (Cs S)/0.265 - (0.0126 %O2) - (A %CO2)

      * * * * *

    14. Amend Sec. 60.154 by revising paragraph (b)(5) to read as follows:

      Sec. 60.154 Test methods and procedures.

      * * * * *

      (b) * * *

      (5) Samples of the sludge charged to the incinerator shall be collected in nonporous jars at the beginning of each run and at approximately 1-hour intervals thereafter until the test ends; and ``2540 G. Total, Fixed, and Volatile Solids in Solid and Semisolid Samples, in Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998'' (incorporated by reference--see Sec. 60.17) shall be used to determine dry sludge content of each sample (total solids residue), except that:

      * * * * *

    15. Amend Sec. 60.284 by revising the equation in paragraph (c)(3) to read as follows:

      Sec. 60.284 Monitoring of emissions and operations.

      * * * * *

      (c) * * *

      (3) * * *

      Ccorr = Cmeas x (21 - X)/(21 - Y)

      * * * * *

    16. Amend Sec. 60.335 by revising two terms for the equation in paragraph (b)(1)to read as follows:

      Sec. 60.335 Test methods and procedures.

      * * * * *

      (b) * * *

      (1) * * *

      Pr = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure. Alternatively, you may use 760 mm Hg (29.92 in Hg),

      Po = observed combustor inlet absolute pressure at test, mm Hg. Alternatively, you may use the barometric pressure for the date of the test,

      * * * * *

    17. Amend 60.374 by revising paragraphs (b)(1), (b)(2), and (c)(2) to read as follows:

      Sec. 60.374 Test methods and procedures.

      * * * * *

      (b) * * *

      (1) Method 12 or Method 29 shall be used to determine the lead concentration (CPb) and, if applicable, the volumetric flow rate (Qsda) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).

      (2) When different operations in a three-process operation facility are ducted to separate control devices, the lead emission concentration (C) from the facility shall be determined as follows:

      GRAPHIC TIFF OMITTED TP09JA12.024

      Where:

      C = Concentration of lead emissions for the entire facility, mg/dscm (gr/dscf).

      Ca = Concentration of lead emissions from facility ``a'', mg/dscm (gr/dscf).

      Qsda = Volumetric flow rate of effluent gas from facility ``a'', dscm/hr (dscf/hr).

      N = Total number of control devices to which separate operations in the facility are ducted.

      * * * * *

      (c) * * *

      (2) Method 12 or Method 29 shall be used to determine the lead concentration (CPb) and the volumetric flow rate (Qsd) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).

      * * * * *

    18. Amend Sec. 60.382 by revising paragraph (a)(1) to read as follows:

      Sec. 60.382 Standard for particulate matter.

      * * * * *

      (a) * * *

      (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic meter (0.05 g/dscm).

      * * * * *

    19. Amend Sec. 60.386 by revising paragraph (b)(2) to read as follows:

      Sec. 60.386 Test methods and procedures.

      * * * * *

      (b) * * *

      (2) Method 9 and the procedures in Sec. 60.11 shall be used to determine opacity from stack emissions and process fugitive emissions. The observer shall read opacity only when emissions are clearly identified as emanating solely from the affected facility being observed. A single visible emission observer may conduct visible emission observations for up to three fugitive, stack, or vent emission points within a 15-second interval. This option is subject to the following limitations:

      (i) No more than three emission points are read concurrently;

      (ii) All three emission points must be within a 70deg viewing sector or angle in front of the observer such that the proper sun position can be maintained for all three points; and

      (iii) If an opacity reading for any one of the three emission points is within 5 percent opacity of the application standard, then the observer must stop taking readings for the other two points and continue reading just that single point.

      * * * * *

    20. Amend Sec. 60.472 by revising paragraph (a)(1)(ii) to read as follows:

      Sec. 60.472 Standards for particulate matter.

      * * * * *

      (a) * * *

      (1) * * *

      (ii) 0.4 kg/Mg (0.8 lb/ton) of saturated felt or smooth-surfaced roll roofing produced;

      * * * * *

    21. Amend Sec. 60.660 by revising paragraph (c)(4) to read as follows:

      Sec. 60.660 Applicability and designation of affected facility.

      * * * * *

      (c) * * *

      (4) Each affected facility that has a total resource effectiveness (TRE) index value greater than 8.0 is exempt from all provisions of this subpart except for Sec. Sec. 60.662; 60.664 (e), (f), and (g); and 60.665 (h) and (l).

      * * * * *

      Page 1147

    22. Amend Sec. 60.665 by revising paragraphs (h)(2) and (3) to read as follows:

      Sec. 60.665 Reporting and recordkeeping requirements.

      * * * * *

      (h) * * *

      (2) Any recalculation of the TRE index value performed pursuant to Sec. 60.664(g); and

      (3) The results of any performance test performed pursuant to the methods and procedures required by Sec. 60.664(e).

      * * * * *

    23. Amend Subpart IIII by revising Table 7 to read as follows:

      Table 7 to Subpart IIII of Part 60--Requirements for Performance Tests for Stationary CI ICE With a Displacement

      of >= 30 Liters Per Cylinder

      As stated in Sec. 60.4213, you must comply with the following requirements for performance tests for

      stationary CI ICE with a displacement of >= 30 liters per cylinder

      ----------------------------------------------------------------------------------------------------------------

      According to the

      Each Complying with the You must Using following

      requirement to requirements

      ----------------------------------------------------------------------------------------------------------------

    24. Stationary CI internal a. Reduce NOX i. Measure NOX at (1) Method 7E of (a) NOX

      combustion engine with a emissions by 90 the centroid of 40 CFR part 60, concentration

      displacement of >= 30 liters percent or more. the exhaust at Appendix A, must be at 15

      per cylinder. the inlet and Method 320 of 40 percent O2, dry

      outlet of the CFR part 63, basis. Results of

      control device; Appendix A, or this test consist

      ASTM D 6348-03 of the average of

      (incorporated by the three 1-hour

      reference, see or longer runs.

      Sec. 60.17).

      ii. Measure O2 at (2) Method 3, 3A, (b) Measurements

      the inlet and or 3B of 40 CFR to determine O2

      outlet of the part 60, Appendix concentration

      control device; A. must be made at

      and, the same time as

      the measurements

      for NOX

      concentration.

      iii. If necessary, (3) Method 4 of 40 (c) Measurements

      measure moisture CFR part 60, to determine

      content at the Appendix A, moisture content

      inlet and outlet Method 320 of 40 must be made at

      of the control CFR part 63, the same time as

      device. Appendix A, or the measurements

      ASTM D 6348-03 for NOX

      (incorporated by concentration.

      reference, see

      Sec. 60.17).

      1. Limit the i. Measure NOX at (1) Method 7E of (a) If using a

        concentration of the centroid of 40 CFR part 60, control device,

        NOX in the the exhaust of Appendix A, the sampling site

        stationary CI the stationary Method 320 of 40 must be located

        internal internal CFR part 63, at the outlet of

        combustion engine combustion Appendix A, or the control

        exhaust. engine; ASTM D 6348-03 device. NOX

        (incorporated by concentration

        reference, see must be at 15

        Sec. 60.17). percent O2, dry

        basis. Results of

        this test consist

        of the average of

        the three 1-hour

        or longer runs.

        ii. Determine the (2) Method 3, 3A, (b) Measurements

        O2 concentration or 3B of 40 CFR to determine O2

        of the stationary part 60, Appendix concentration

        internal A. must be made at

        combustion engine the same time as

        exhaust at the the measurement

        sampling port for NOX

        location; and, concentration.

        iii. If necessary, (3) Method 4 of 40 (c) Measurements

        measure moisture CFR part 60, to determine

        content of the Appendix A, moisture content

        stationary Method 320 of 40 must be made at

        internal CFR part 63, the same time as

        combustion engine Appendix A, or the measurement

        exhaust at the ASTM D 6348-03 for NOX

        sampling port (incorporated by concentration.

        location. reference, see

        Sec. 60.17).

      2. Reduce PM i. Select the (1) Method 1 or 1A (a) Sampling sites

        emissions by 60 sampling port of 40 CFR part must be located

        percent or more. location and the 60, Appendix A. at the inlet and

        number of outlet of the

        traverse points; control device.

        ii. Measure O2 at (2) Method 3, 3A, (b) Measurements

        the inlet and or 3B of 40 CFR to determine O2

        outlet of the part 60, Appendix concentration

        control device; A. must be made at

        the same time as

        the measurements

        for PM

        concentration.

        iii. If necessary, (3) Method 4 of 40 (c) Measurements

        measure moisture CFR part 60, to determine and

        content at the Appendix A. moisture content

        inlet and outlet must be made at

        of the control the same time as

        device; and the measurements

        for PM

        concentration.

        Page 1148

        iv. Measure PM at (4) Method 5 of 40 (d) PM

        the inlet and CFR part 60, concentration

        outlet of the Appendix A. must be at 15

        control device. percent O2, dry

        basis. Results of

        this test consist

        of the average of

        the three 1-hour

        or longer runs.

      3. Limit the i. Select the (1) Method 1 or 1A (a) If using a

        concentration of sampling port of 40 CFR part control device,

        PM in the location and the 60, Appendix A. the sampling site

        stationary CI number of must be located

        internal traverse points; at the outlet of

        combustion engine the control

        exhaust. device.

        ii. Determine the (2) Method 3, 3A, (b) Measurements

        O2 concentration or 3B of 40 CFR to determine O2

        of the stationary part 60, Appendix concentration

        internal A. must be made at

        combustion engine the same time as

        exhaust at the the measurements

        sampling port for PM

        location; and concentration.

        iii. If necessary, (3) Method 4 of 40 (c) Measurements

        measure moisture CFR part 60, to determine

        content of the Appendix A. moisture content

        stationary must be made at

        internal the same time as

        combustion engine the measurements

        exhaust at the for PM

        sampling port concentration.

        location;

        iv. Measure PM at (4) Method 5 of 40 (d) PM

        the exhaust of CFR part 60, concentration

        the stationary Appendix A. must be at 15

        internal percent O2, dry

        combustion basis. Results of

        engine. this test consist

        of the average of

        the three 1-hour

        or longer runs.

        ----------------------------------------------------------------------------------------------------------------

    25. Amend Subpart JJJJ by revising Table 2 to read as follows:

      Table 2 to Subpart JJJJ of Part 60--Requirements for Performance Tests

      As stated in Sec. 60.4244, you must comply with the following requirements for performance tests within 10

      percent of 100 percent peak (or the highest achievable) load

      ----------------------------------------------------------------------------------------------------------------

      According to the

      For each Complying with the You must Using following

      requirement to requirements

      ----------------------------------------------------------------------------------------------------------------

    26. Stationary SI internal a. limit the i. Measure NOX at (1) Method 7E of (a) If using a

      combustion engine demonstrating concentration of the centroid of 40 CFR part 60, control device,

      compliance according to Sec. NOX in the the exhaust of Appendix A, the sampling site

      60.4244. stationary SI the stationary Method D6522- must be located

      internal internal 00(2005),\a\ at the outlet of

      combustion engine combustion Method 320 of 40 the control

      exhaust. engine; CFR part 63, device. Results

      Appendix A, or of this test

      ASTM D6348-03 consist of the

      (incorporated by average of the

      reference, see three 1-hour or

      Sec. 60.17). longer runs.

      ii. Determine the (2) Method 3, 3A, (b) Measurements

      O2 concentration or 3B \b\ of 40 to determine O2

      of the stationary CFR part 60, concentration

      internal Appendix A or must be made at

      combustion engine ASTM Method D6522- the same time as

      exhaust; 00(2005).\a\ the measurements

      for NOX

      concentration.

      iii. Determine the (3) Method 2 or 19 ..................

      exhaust flow rate of 40 CFR part

      of the stationary 60.

      internal

      combustion engine

      exhaust; and

      Page 1149

      iv. If necessary, (4) Method 4 of 40 (c) Measurements

      measure moisture CFR part 60, to determine

      content of the Appendix A, moisture must be

      stationary Method 320 of 40 made at the same

      internal CFR part 63, time as the

      combustion engine Appendix A, or measurement for

      exhaust at the ASTM D6348-03 NOX

      sampling port (incorporated by concentration.

      location. reference, see

      Sec. 60.17).

      1. limit the i. Sample for CO (1) Method 10 of (a) If using a

        concentration of at the centroid 40 CFR part 60, control device,

        CO in the of the stack of Appendix A, ASTM the sampling site

        stationary SI the stationary Method D6522- must be located

        internal internal 00(2005),\a\ at the outlet of

        combustion engine combustion Method 320 of 40 the control

        exhaust. engine; CFR part 63, device. Results

        Appendix A, or of this test

        ASTM D 6348-03 consist of the

        (incorporated by average of the

        reference, see three 1-hour or

        Sec. 60.17). longer runs.

        ii. Determine the (2) Method 3, 3A, (b) Measurements

        O2 concentration or 3B \b\ of 40 to determine O2

        of the stationary CFR part 60, concentration

        internal Appendix A or must be made at

        combustion engine ASTM Method D6522- the same time as

        exhaust at the 00(2005).\a\ the measurements

        sampling port for CO

        location; concentration.

        iii. Determine the (3) Method 2 or 19 ..................

        exhaust flow rate of 40 CFR part

        of the stationary 60.

        internal

        combustion engine

        exhaust; and

        iv. If necessary, (4) Method 4 of 40 (c) Measurements

        measure moisture CFR part 60, to determine

        content of the Appendix A, moisture must be

        stationary Method 320 of 40 made at the same

        internal CFR part 63, time as the

        combustion engine Appendix A, or measurement for

        exhaust at the ASTM D6348-03 CO concentration.

        sampling port (incorporated by

        location. reference, see

        Sec. 60.17).

      2. limit the i. Measure VOC at (1) Methods 25A (a) If using a

        concentration of the centroid of and 18 of 40 CFR control device,

        VOC in the the exhaust of part 60, Appendix the sampling site

        stationary SI the stationary A, Method 25A must be located

        internal internal with the use of a at the outlet of

        combustion engine combustion methane cutter as the control

        exhaust. engine; described in 40 device. Results

        CFR 1065.265, of this test

        Method 18 or 40 consist of the

        CFR part 60, average of the

        Appendix A,c d three 1-hour or

        Method 320 of 40 longer runs.

        CFR part 63,

        Appendix A, or

        ASTM D6348-03

        (incorporated by

        reference, see

        Sec. 60.17).

        ii. Determine the (2) Method 3, 3A, (b) Measurements

        O2 concentration or 3B \b\ of 40 to determine O2

        of the stationary CFR part 60, concentration

        internal Appendix A or must be made at

        combustion engine ASTM Method D6522- the same time as

        exhaust at the 00(2005).\a\ the measurements

        sampling port for VOC

        location; concentration.

        iii. Determine the (3) Method 2 or 19 ..................

        exhaust flow rate of 40 CFR part

        of the stationary 60.

        internal

        combustion engine

        exhaust; and

        iv. If necessary, (4) Method 4 of 40 (c) Measurements

        measure moisture CFR part 60, to determine

        content of the Appendix A, moisture must be

        stationary Method 320 of 40 made at the same

        internal CFR part 63, time as the

        combustion engine Appendix A, or measurement for

        exhaust at the ASTM D6348-03 VOC

        sampling port (incorporated by concentration.

        location. reference, see

        Sec. 60.17).

        ----------------------------------------------------------------------------------------------------------------

        \a\ ASTM D6522-00 is incorporated by reference; see 40 CFR 60.17. Also, you may petition the Administrator for

        approval to use alternative methods for portable analyzer.

        \b\ You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the O2 content of the exhaust

        gas as an alternative to EPA Method 3B.

        Page 1150

        \c\ You may use EPA Method 18 of 40 CFR part 60, appendix A, provided that you conduct an adequate pre-survey

        test prior to the emissions test, such as the one described in OTM 11 on EPA's Web site (http://www.epa.gov/ttn/emc/prelim/otm11.pdf).

        \d\ You may use ASTM D6420-99 (2004), Test Method for Determination of Gaseous Organic Compounds by Direct

        Interface Gas Chromatography/Mass Spectrometry as an alternative to EPA Method 18 for measuring total

        nonmethane organic.

    27. Amend Method 1 of Appendix A-1 to Part 60 by revising Sections 11.2.2, 11.4.1, and Figures 1-1 and 1-2 to read as follows:

      Appendix A-1 to Part 60--Test Methods 1 Through 2F

      Method 1--Sample and Velocity Traverses From Stationary Sources

      * * * * *

      11.2.2 Velocity and Gaseous (Non-Particulate) Traverses. Perform a stratification test to determine the appropriate number of sample traverse points. If testing for multiple pollutants or diluents at the same site, a stratification test using only one pollutant or diluent satisfies this requirement. A stratification test is not required for small stacks that are less than 4 inches in diameter. When the 8- and 2-diameter criterion can be met, the minimum number of traverse points for the stratification test will be 12. Test for stratification using a probe of appropriate length to measure the gas concentration at the required traverse points located according to Table 1-2. Alternatively (if the 8- and 2-diameter criterion is met), you may measure the gas concentration at three points on a line passing through the centroidal area. Space the three points at 16.7, 50.0, and 83.3 percent of the measurement line. Sample for a minimum of twice the system response time at each traverse point. Calculate the individual point and mean concentrations. If the concentration at each traverse point differs from the mean concentration for all traverse points by no more than: (a) 5.0 percent of the mean concentration; or (b) 0.5 ppm (whichever is less restrictive), the gas stream is considered unstratified and you may collect samples from a single point that most closely matches the mean. If the 5.0 percent or 0.5 ppm criterion is not met, but the concentration at each traverse point differs from the mean concentration for all traverse points by no more than: (a) 10.0 percent of the mean; or (b) 1.0 ppm (whichever is less restrictive), the gas stream is considered to be minimally stratified, and you may take samples from three points. Space the three points at 16.7, 50.0, and 83.3 percent of the measurement line. Alternatively, if a 12-point stratification test was performed and the emissions were shown to be minimally stratified (all points within 10.0 percent of their mean or within 1.0 ppm), and if the stack diameter (or equivalent diameter, for a rectangular stack or duct) is greater than 2.4 meters (7.8 ft), then you may use 3-point sampling and locate the three points along the measurement line exhibiting the highest average concentration during the stratification test at 0.4, 1.0 and 2.0 meters from the stack or duct wall. If the gas stream is found to be stratified because the 10.0 percent or 1.0 ppm criterion for a 3-point test is not met, locate 12 traverse points for the test in accordance with Table 1-2.

      * * * * *

      11.4.1 In most stationary sources, the direction of stack gas flow is essentially parallel to the stack walls. However, cyclonic flow may exist: (1) after such devices as cyclones and inertial demisters following venturi scrubbers, or (2) in stacks having tangential inlets or other duct configurations which tend to induce swirling. Determine the presence or absence of cyclonic flow at each sampling location. The following techniques are acceptable for this determination.

      * * * * *

      GRAPHIC TIFF OMITTED TP09JA12.025

      Page 1151

      GRAPHIC TIFF OMITTED TP09JA12.026

      * * * * *

    28. Amend Method 2 of Appendix A-1 to Part 60 as follows:

      1. By revising Section 8.1.

      2. By revising the Note at the end of 10.1.1

      3. By revising Section 10.4.

      4. By adding a term to Section 12.1.

      5. By revising Sections 12.6, and 12.7.

      Method 2--Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

      * * * * *

      8.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge tanks installed between the manometer and pitot tube may be used to dampen DeltaP fluctuations. It is recommended, but not required, that a pretest leak-check be conducted as follows: (1) blow through the pitot impact opening until at least 7.6 cm (3.0 in.) H2O velocity head registers on the manometer; then, close off the impact opening. The pressure shall remain stable ( 2.5 mm H2O, 0.10 in. H2O) for at least 15 seconds; (2) do the same for the static pressure side, except using suction to obtain the minimum of 7.6 cm (3.0 in.) H2O. Other leak-check procedures, subject to the approval of the Administrator, may be used.

      * * * * *

      10.1.1 * * *

      Note: Do not use a Type S pitot tube assembly that is constructed such that the impact pressure opening plane of the pitot tube is below the entry plane of the nozzle (see Figure 2-7B).

      * * * * *

      10.4 Barometer. Calibrate the barometer used against a mercury barometer or NIST-traceable barometer prior to each field test.

      * * * * *

      12.1 Nomenclature

      * * *

      Ts(abavg)--Average absolute stack temperature, degK (degR).

      * * * * *

      12.6 Average Stack Gas Velocity.

      GRAPHIC TIFF OMITTED TP09JA12.027

      Where:

      GRAPHIC TIFF OMITTED TP09JA12.028

      Page 1152

      12.7 Average Stack Gas Dry Volumetric Flow Rate.

      GRAPHIC TIFF OMITTED TP09JA12.029

      * * * * *

    29. Amend Method 2A of Appendix A-1 to Part 60 by revising Sections 10.3 and 12.2 to read as follows:

      Method 2A--Direct Measurement of Gas Volume Through Pipes and Small Ducts

      * * * * *

      10.3 Barometer. Calibrate the barometer used against a mercury barometer or NIST-traceable barometer prior to the field test.

      * * * * *

      12.2 Test Meter Calibration Coefficient.

      GRAPHIC TIFF OMITTED TP09JA12.030

      * * * * *

    30. Amend Method 2B of Appendix A-1 to Part 60 by revising Section 12.1 to read as follows:

      Method 2B--Determination of Exhaust Gas Volume Flow Rate from Gasoline Vapor Incinerators

      * * * * *

      12.1 Nomenclature.

      COe = Mean carbon monoxide concentration in system exhaust, ppm.

      (CO2)a = Ambient carbon dioxide concentration, ppm (if not measured during the test period, may be assumed to equal 380 ppm).

      (CO2)e = Mean carbon dioxide concentration in system exhaust, ppm.

      HCe = Mean organic concentration in system exhaust as defined by the calibration gas, ppm.

      Hci = Mean organic concentration in system inlet as defined by the calibration gas, ppm.

      Ke = Hydrocarbon calibration gas factor for the exhaust hydrocarbon analyzer, unitless equal to the number of carbon atoms per molecule of the gas used to calibrate the analyzer (2 for ethane, 3 for propane, etc.).

      Ki = Hydrocarbon calibration gas factor for the inlet hydrocarbon analyzer, unitless.

      Ves = Exhaust gas volume, m\3\.

      Vis = Inlet gas volume, m\3\.

      Qes = Exhaust gas volume flow rate, m\3\/min.

      Qis = Inlet gas volume flow rate, m\3\/min.

      Theta = Sample run time, min.

      S = Standard conditions: 20 degC, 760 mm Hg.

      * * * * *

    31. Amend Method 2D of Appendix A-1 to Part 60 by revising Section 10.4 to read as follows:

      Method 2D--Measurement of Gas Volume Flow Rates in Small Pipes and Ducts

      * * * * *

      10.4 Barometer. Calibrate the barometer used against a mercury barometer or NIST-traceable barometer prior to the field test.

      * * * * *

    32. Amend Method 3A of Appendix A-2 to Part 60 by revising Section 7.1 to read as follows:

      Appendix A-2 to Part 60--Test Methods 2G through 3C

      * * * * *

      Method 3A--Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)

      * * * * *

      7.1 Calibration Gas. What calibration gases do I need? Refer to Section 7.1 of Method 7E for the calibration gas requirements. Example calibration gas mixtures are listed below. Pre-cleaned or scrubbed air may be used for the O2 high-calibration gas provided it does not contain other gases that interfere with the O2 measurement.

      (

      1. CO2 in Nitrogen (N2).

      (b) CO2 in air.

      (c) CO2/SO2 gas mixture in N2.

      (d) O2/SO2 gas mixture in N2.

      (e) O2/CO2/SO2 gas mixture in N2.

      (f) CO2/NOX gas mixture in N2.

      (g) CO2/SO2/NOX gas mixture in N2.

      The tests for analyzer calibration error and system bias require high-, mid-, and low-level gases.

      * * * * *

    33. Amend Method 4 of Appendix A-3 to Part 60 by revising Sections 9.1 and 16 to read as follows:

      Appendix A-3 to Part 60--Test Methods 4 Through 5I

      * * * * *

      Method 4--Determination of Moisture Content in Stack Gases

      * * * * *

      9.1 Miscellaneous Quality Control Measures.

      ------------------------------------------------------------------------

      Quality control

      Section measure Effect

      ------------------------------------------------------------------------

      Section 8.1.1.4............. Leak rate of the Ensures the accuracy

      sampling system of the volume of

      cannot exceed four gas sampled.

      percent of the (Reference Method)

      average sampling

      rate or 0.00057

      m\3\/min (0.020

      cfm).

      Section 8.2.1............... Leak rate of the Ensures the accuracy

      sampling system of the volume of

      cannot exceed two gas sampled.

      percent of the (Approximation

      average sampling Method)

      rate.

      ------------------------------------------------------------------------

      * * * * *

      16.0 Alternative Procedures

      16.1 The procedure described in Method 5 for determining moisture content is an acceptable alternative to Method 4.

      16.2 The procedures in Method 6A for determining moisture is an acceptable alternative to Method 4.

      16.3 Method 320 is an acceptable alternative to Method 4 for determining moisture.

      16.4 Using F-factors to determine moisture is an acceptable alternative to Method 4. For a combustion stack not using a scrubber, the moisture content may be calculated as follows:

      GRAPHIC TIFF OMITTED TP09JA12.031

      Where:

      BA = Mole fraction of moisture in the ambient air.

      GRAPHIC TIFF OMITTED TP09JA12.032

      BF = Mole fraction of moisture from free water in the fuel.

      Page 1153

      GRAPHIC TIFF OMITTED TP09JA12.033

      BH = Mole fraction of moisture from the hydrogen in the fuel.

      GRAPHIC TIFF OMITTED TP09JA12.034

      Bws = Mole fraction of moisture in the stack gas.

      Fd = Volume of dry combustion components per unit of heat content at 0 percent oxygen, dscf/10\6\ Btu (scm/J). See Table 19-2 in Method 19.

      FW = Volume of wet combustion components per unit of heat content at 0 percent oxygen, wet scf/10\6\ Btu (scm/J). See Table 19-2 in Method 19.

      %RH = Percent relative humidity (calibrated hydrometer acceptable), percent.

      PBar = Barometric pressure, in. Hg (mm Hg).

      T = Ambient temperature, degF (degC).

      W = Percent free water by weight, percent.

      O2 = Percent oxygen in stack gas, dry basis, percent.

      * * * * *

    34. Amend Method 5 of Appendix A-3 to Part 60 as follows:

      1. By revising Sections 6.1.1.5, 6.1.1.7, and 6.1.1.9.

      2. By revising Section 7.1.3.

      3. By removing Section 7.1.5.

      4. By revising Sections 8.1, 8.3.4, 8.7.3, and 8.7.5.

      5. By revising Sections 10.3.3, 10.4, 10.5, and 10.6.

      6. By revising Equation 5-13 in Section 16.2.3.3.

      7. By adding Section 16.3.

      8. By adding reference 13 to Section 17.0.

      Method 5--Determination of Particulate Matter Emissions From Stationary Sources

      * * * * *

      6.1.1.5 Filter Holder. Borosilicate glass, with a glass frit filter support and a silicone rubber gasket. Alternatively, Teflon filter holders may be used. Other materials of construction (e.g., stainless steel or Viton) may be used, subject to the approval of the Administrator. The holder design shall provide a positive seal against leakage from the outside or around the filter. The holder shall be attached immediately at the outlet of the probe (or cyclone, if used).

      * * * * *

      6.1.1.7 Temperature Sensor. A calibrated temperature sensor (rechecked at at least one point after each test) shall be installed so that the sensing tip of the temperature sensor is in direct contact with the sample gas, and the temperature around the filter holder can be regulated and monitored during sampling.

      * * * * *

      6.1.1.9 Metering System. Vacuum gauge, leak-free pump, calibrated temperature sensors (rechecked at at least one point after each test), dry gas meter (DGM) capable of measuring volume to within 2 percent, and related equipment, as shown in Figure 5-1. Alternatively, an Isostack metering system may be used if all Method 5 calibrations are performed, with the exception of those related to DeltaH@ in Section 9.2.1, wherein the sample flow rate system shall be calibrated in lieu of DeltaH@ and shall not deviate by more than 5 percent. Other metering systems capable of maintaining sampling rates within 10 percent of isokinetic and of determining sample volumes to within 2 percent may be used, subject to the approval of the Administrator. When the metering system is used in conjunction with a pitot tube, the system shall allow periodic checks of isokinetic rates.

      * * * * *

      7.1.3 Water. When analysis of the material caught in the impingers is required, deionized distilled water (to conform to ASTM D 1193-77 or 91 Type 3 (incorporated by reference--see Sec. 60.17)) with 2 degF. Note: The probe heating system shall be calibrated before its initial use in the field.

      10.5 Temperature Sensors. Use the procedure in Section 10.3 of Method 2 to calibrate in-stack temperature sensors. Dial thermometers, such as are used for the DGM and condenser outlet, shall be calibrated against mercury-in-glass thermometers. An alternative mercury-free NIST-traceable thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      10.6 Barometer. Calibrate against a mercury barometer or NIST-

      traceable barometer prior to the field test. Alternatively, barometric pressure may be obtained from a weather report that has been adjusted for the test point (on the stack) elevation.

      * * * * *

      16.2.3.3 * * *

      Page 1154

      GRAPHIC TIFF OMITTED TP09JA12.035

      * * * * *

      16.3 Alternative Post-Test Metering System Calibration. The following procedure may be used as an alternative to the post-test calibration described in Section 10.3.2. This alternative procedure does not detect leakages between the inlet of the metering system and the dry gas meter. Therefore, two steps must be included to make it an equivalent alternative: (1) The metering system must pass the post-test leak-check from either the inlet of the sampling train or the inlet of the metering system. Therefore, if the train fails the former leak-check, another leak-check from the inlet of the metering system must be conducted; (2) The metering system must pass the leak-check of that portion of the train from the pump to the orifice meter as described in Section 10.3.1.1.

      16.3.1 After each test run, do the following:

      16.3.1.1 Ensure that the metering system has passed the post-

      test leak-check. If not, conduct a leak-check of the metering system from its inlet.

      16.3.1.2 Conduct the leak-check of that portion of the train from the pump to the orifice meter as described in Section 10.3.1.1.

      16.3.1.3 Calculate Yqa for each test run using the following equation:

      GRAPHIC TIFF OMITTED TP09JA12.036

      Where:

      Yqa = Dry gas meter calibration check value, dimensionless.

      0.0319 = (29.92/528)(0.75)\2\(in. Hg/degR) cfm\2\.

      DeltaH@ = Orifice meter calibration coefficient, in. H2O.

      Md = Dry molecular weight of stack gas, lb/lb-mole.

      29 = Dry molecular weight of air, lb/lb-mole.

      16.3.2 After each test run series, do the following:

      16.3.2.1 Average the three or more Yqa's obtained from the test run series and compare this average Yqa with the dry gas meter calibration factor Y. The average Yqa must be within 5 percent of Y.

      16.3.2.2 If the average Yqa does not meet the 5 percent criterion, recalibrate the meter over the full range of orifice settings as detailed in Section 10.3.1. Then follow the procedure in Section 10.3.3.

      * * * * *

      17.0 References

      * * * * *

    35. Shigehara, Roger T., P.G. Royals, and E.W. Steward. ``Alternative Method 5 Post-Test Calibration.'' Entropy Incorporated, Research Triangle Park, NC 27709.

      * * * * *

    36. Amend Method 5A of Appendix A-3 to Part 60 by revising Section 8.1 to read as follows:

      Method 5A--Determination of Particulate Matter Emissions From the Asphalt Processing and Asphalt Roofing Industry

      * * * * *

      8.1 Pretest Preparation. Unless otherwise specified, maintain and calibrate all components according to the procedure described in APTD-0576, ``Maintenance, Calibration, and Operation of Isokinetic Source-Sampling Equipment'' (Reference 3 in Method 5, Section 17.0). Alternative mercury-free thermometers may be used if the thermometers are, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    37. Amend Method 5E of Appendix A-3 to Part 60 as follows:

      1. By redesignating Sections 16 and 17 as Sections 17 and 18.

      2. By adding a new Section 16.

      Method 5E--Determination of Particulate Matter Emissions From the Wool Fiberglass Insulation Manufacturing Industry

      * * * * *

      16.0 Alternative Procedures

      16.1 Total Organic Carbon Analyzer. Tekmar-Dohrmann analyzers using the single injection technique may be used as an alternative to Rosemount Model 2100A analyzers.

      * * * * *

    38. Amend Method 5H of Appendix A-3 to Part 60 as follows:

      1. By revising Section 12.1.

      2. By adding Section 12.15.

      3. By redesignating Sections 16 and 17 as Sections 17 and 18, respectively.

      4. By adding a new Section 16.

      Method 5H--Determination of Particulate Matter Emissions From Wood Heaters From a Stack Location

      * * * * *

      12.1 Nomenclature.

      A = Sample flow rate adjustment factor.

      BR = Dry wood burn rate, kg/hr (lb/hr), from Method 28, Section 8.3.

      Bws = Water vapor in the gas stream, proportion by volume.

      Ci = Tracer gas concentration at inlet, ppmv.

      Co = Tracer gas concentration at outlet, ppmv.

      Cs = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscm (g/dscf).

      E = Particulate emission rate, g/hr (lb/hr).

      DeltaH = Average pressure differential across the orifice meter (see Figure 5H-1), mm H2O (in. H2O).

      La = Maximum acceptable leakage rate for either a post-

      test leak-check or for a leak-check following a component change; equal to 0.00057 cmm (0.020 cfm) or 4 percent of the average sampling rate, whichever is less.

      L1 = Individual leakage rate observed during the leak-

      check conducted before a component change, cmm (cfm).

      Lp = Leakage rate observed during the post-test leak-

      check, cmm (cfm).

      mn = Total amount of particulate matter collected, mg.

      Ma = Mass of residue of solvent after evaporation, mg.

      NC = Grams of carbon/gram of dry fuel (lb/lb), equal to 0.0425.

      NT = Total dry moles of exhaust gas/kg of dry wood burned, g-moles/kg (lb-moles/lb).

      PR = Percent of proportional sampling rate.

      Pbar = Barometric pressure at the sampling site, mm Hg (in.Hg).

      Pstd = Standard absolute pressure, 760 mm Hg (29.92 in.Hg).

      Qi = Gas volumetric flow rate at inlet, cfm (l/min).

      Qo = Gas volumetric flow rate at outlet, cfm (l/min).

      * * * * *

      12.15 Alternative Tracer Gas Flow Rate Determination.

      GRAPHIC TIFF OMITTED TP09JA12.037

      Note: This gives Q for a single instance only. Repeated multiple determinations are needed to track temporal variations. Very small variations in Qi, Ci, or Co may give very large variations in Qo.

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Stack Gas Volumetric Flow Rate Determination (Tracer Gas).

      16.1.1 Apparatus.

      16.1.1.1 Tracer Gas Injector System. This is to inject a known concentration of tracer gas into the stack. This system consists of a cylinder of tracer gas, a gas cylinder

      Page 1155

      regulator, a stainless steel needle valve or a flow controller, a nonreactive (stainless steel or glass) rotameter, and an injection loop to disperse the tracer gas evenly in the stack.

      16.1.1.2 Tracer Gas Probe. A glass or stainless steel sampling probe.

      16.1.1.3 Gas Conditioning System. A gas conditioning is a system suitable for delivering a cleaned sample to the analyzer consisting of a filter to remove particulate and a condenser capable of lowering the dew point of the sample gas to less than 5 degC (40 degF). A desiccant such as anhydrous calcium sulfate may be used to dry the sample gas. Desiccants which react or absorb tracer gas or stack gas may not be used, e.g. silica gel absorbs CO2.

      16.1.1.4 Pump. An inert (i.e., stainless steel or Teflon head) pump to deliver more than the total sample required by the manufacturer's specifications for the analyzer used to measure the downstream tracer gas concentration.

      16.1.1.5 Gas Analyzer. A gas analyzer is any analyzer capable of measuring the tracer gas concentration in the range necessary at least every 10 minutes. A means of controlling the analyzer flow rate and a device for determining proper sample flow rate shall be provided unless data is provided to show that the analyzer is insensitive to flow variations over the range encountered during the test. The gas analyzer needs to meet or exceed the flowing performance specifications:

      ------------------------------------------------------------------------

      ------------------------------------------------------------------------

      Linearity.......................... 1 percent of full

      scale.

      Calibration Error.................. 2 for NOX as the method pollutant. For dilution-type measurement systems, you must use the alternative interference check procedure in Section 16 and a co-

      located, unmodified Method 6 sampling train. Quenching in fluorescence analyzers must be evaluated and remedied unless a dilution system and ambient-level analyzer is used. This may be done by preparing the calibration gas to contain within 1 percent of the absolute oxygen and carbon dioxide content of the measured gas, preparing the calibration gas in air and using vendor nomographs, or by other acceptable means.

      * * * * *

    39. Amend Method 7 of Appendix A-4 to Part 60 by revising Sections 4.0, 10.2, and 10.3 to read as follows:

      Method 7--Determination of Nitrogen Oxide Emissions From Stationary Sources

      * * * * *

      4.0 Interferences

      Biased results have been observed when sampling under conditions of high sulfur dioxide concentrations. At or above 2100 ppm SO2, use five times the H2O2 concentration of the Method 7 absorbing solution. Laboratory tests have shown that high concentrations of SO2 (about 2100 ppm) cause low results in Method 7 and 7A. Increasing the H2O2 concentration to five times the original concentration eliminates this bias. However, when no SO2 is present, increasing the concentration by five times results in a low bias.

      * * * * *

      10.2 Barometer. Calibrate against a mercury barometer or NIST-

      traceable barometer prior to the field test.

      10.3 Temperature Gauge. Calibrate dial thermometers against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    40. Amend Method 7A of Appendix A-4 to Part 60 by revising Sections 4.0 and 10.4 to read as follows:

      Method 7A--Determination of Nitrogen Oxide Emissions From Stationary Sources (Ion Chromatographic Method)

      * * * * *

      4.0 Interferences

      Biased results have been observed when sampling under conditions of high sulfur dioxide concentrations. At or above 2100 ppm SO2, use five times the H2O2 concentration of the Method 7 absorbing solution. Laboratory tests have shown that high concentrations of SO2 (about 2100 ppm) cause low results in Method 7 and 7A. Increasing the H2O2 concentration to five times the original concentration eliminates this bias. However, when no SO2 is present, increasing the concentration by five times results in a low bias.

      * * * * *

      10.4 Temperature Gauge. Calibrate dial thermometers against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    41. Amend Method 7E of Appendix A-4 to Part 60 as follows:

      1. By revising Section 6.1.

      2. By revising Section 7.1.1.

      3. By revising Sections 8.1.2 and 8.2.5.

      4. By revising Section 16.2.2.

      Method 7E--Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)

      * * * * *

      6.1 What do I need for the measurement system? You may use any equipment and supplies meeting the following specifications:

      (1) Sampling system components that are not evaluated in the system bias or system calibration error test must be glass, Teflon, or stainless steel. Other materials are potentially acceptable, subject to approval by the Administrator.

      (2) The interference, calibration error, and system bias criteria must be met.

      Page 1156

      (3) Sample flow rate must be maintained within 10 percent of the flow rate at which the system response time was measured.

      (4) All system components (excluding sample conditioning components, if used) must maintain the sample temperature above the moisture dew point. Ensure minimal contact between any condensate and the sample gas. Section 6.2 provides example equipment specifications for a NOX measurement system. Figure 7E-1 is a diagram of an example dry-basis measurement system that is likely to meet the method requirements and is provided as guidance. For wet-basis systems, you may use alternative equipment and supplies as needed (some of which are described in Section 6.2), provided that the measurement system meets the applicable performance specifications of this method.

      * * * * *

      7.1.1 High-Level Gas. This concentration is chosen to set the calibration span as defined in Section 3.4. Choose this high-level concentration so that emission measurements will be within 20 to 100 percent of this concentration.

      * * * * *

      8.1.2 Determination of Stratification. Perform a stratification test at each test site to determine the appropriate number of sample traverse points. If testing for multiple pollutants or diluents at the same site, a stratification test using only one pollutant or diluent satisfies this requirement. A stratification test is not required for small stacks that are less than 4 inches in diameter. To test for stratification, use a probe of appropriate length to measure the NOX (or pollutant of interest) concentration at 12 traverse points located according to Table 1-1 or Table 1-2 of Method 1. Alternatively, you may measure at three points on a line passing through the centroidal area. Space the three points at 16.7, 50.0, and 83.3 percent of the measurement line. Sample for a minimum of twice the system response time (see Section 8.2.6) at each traverse point. Calculate the individual point and mean NOX concentrations. If the concentration at each traverse point differs from the mean concentration for all traverse points by no more than: (a) 5.0 percent of the mean concentration; or (b) 0.5 ppm (whichever is less restrictive), the gas stream is considered unstratified and you may collect samples from a single point that most closely matches the mean. If the 5.0 percent or 0.5 ppm criterion is not met, but the concentration at each traverse point differs from the mean concentration for all traverse points by no more than: (a) 10.0 percent of the mean; or (b) 1.0 ppm (whichever is less restrictive), the gas stream is considered to be minimally stratified, and you may take samples from three points. Space the three points at 16.7, 50.0, and 83.3 percent of the measurement line. Alternatively, if a 12-point stratification test was performed and the emissions shown to be minimally stratified (all points within 10.0 percent of their mean or within 1.0 ppm), and if the stack diameter (or equivalent diameter for a rectangular stack or duct) is greater than 2.4 meters (7.8 ft), then you may use 3-point sampling and locate the three points along the measurement line exhibiting the highest average concentration during the stratification test at 0.4, 1.2, and 2.0 meters from the stack or duct wall. If the gas stream is found to be stratified because the 10.0 percent or 1.0 ppm criterion for a 3-

      point test is not met, locate 12 traverse points for the test in accordance with Table 1-1 or Table 1-2 of Method 1. This stratification test may not be meaningful at sources with temporally varying emissions or where emission concentrations are low. In these cases, the stratification test is not required.

      * * * * *

      8.2.5 Initial System Bias and System Calibration Error Checks. Before sampling begins, determine whether the high-level or mid-

      level calibration gas best approximates the emissions and use it as the upscale gas. Introduce the upscale gas at the probe upstream of all sample conditioning components in system calibration mode. Record the time it takes for the measured concentration to increase to a value that is within 95 percent or 0.5 ppm (whichever is less restrictive) of a stable response for both the low-level and upscale gases. Continue to observe the gas concentration reading until it has reached a final, stable value. Record this value on a form similar to Table 7E-2.

      * * * * *

      16.2.2 Bag Procedure. Perform the analyzer calibration error test to document the calibration (both NO and NOX modes, as applicable). Fill a Tedlar or equivalent bag approximately half full with either ambient air, pure oxygen, or an oxygen standard gas with at least 19.5 percent by volume oxygen content. Fill the remainder of the bag with mid- to high-level NO in N2 (or other appropriate concentration) calibration gas. (Note that the concentration of the NO standard should be sufficiently high enough for the diluted concentration to be easily and accurately measured on the scale used. The size of the bag should be large enough to accommodate the procedure and time required. Contact the bag manufacturer for guidance on the applicability of Tedlar equivalent materials for NO.)

      * * * * *

    42. Amend Method 8 of Appendix A-4 to Part 60 as follows:

      1. By revising Sections 11.2.1 and 11.2.2.

      2. By revising two definitions in Section 12.1.

      3. By revising Figure 8-1.

      Method 8--Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions From Stationary Sources

      * * * * *

      11.2.1 Container No. 1. Shake the container holding the isopropanol solution and the filter. If the filter breaks up, allow the fragments to settle for a few minutes before removing a sample aliquot. For determination of SO3/

      H2SO4 concentration, pipette a 10-ml aliquot of this solution into a 250-ml Erlenmeyer flask, add 2 to 4 drops of thorin indicator, and titrate to a pink endpoint using 0.0100 N barium standard solution. Repeat the titration with a second aliquot of sample, and average the titration values. Replicate titrations must agree within 1 percent or 0.2 ml, whichever is greater.

      11.2.2 Container No. 2. Thoroughly mix the solution in the container holding the contents of the second and third impingers. For determination of SO2 concentration, pipette a 100-ml aliquot of sample into a 250-ml Erlenmeyer flask. Add 40 ml of isopropanol, 2 to 4 drops of thorin indicator, and titrate to a pink endpoint using 0.0100 N barium standard solution. Repeat the titration with a second aliquot of sample, and average the titration values. Replicate titrations must agree within 1 percent or 0.2 ml, whichever is greater.

      * * * * *

      12.1 * * *

      Va = Volume of sample aliquot titrated, 10 ml for H2SO4 and 100 ml for SO2.

      Vsoln = Total volume of solution in which the sample is contained, 1000 ml for the SO2 sample and 250 ml for the H2SO4 sample.

      * * * * *

      * * * * *

      Page 1157

      GRAPHIC TIFF OMITTED TP09JA12.038

      * * * * *

    43. Amend Method 10 of Appendix A-4 to Part 60 by revising Sections 6.2.5 and 8.4.2 to read as follows:

      Method 10--Determination of Carbon Monoxide Emissions From Stationary Sources

      * * * * *

      6.2.5 Flexible Bag. Tedlar, or equivalent, with a capacity of 60 to 90 liters (2 to 3 ft \3\). (Contact the bag manufacturer for guidance on the applicability of Tedlar equivalent materials for the compound of interest.) Leak-test the bag in the laboratory before using by evacuating with a pump followed by a dry gas meter. When the evacuation is complete, there should be no flow through the meter. Gas tanks may be used in place of bags if the samples are analyzed within one week.

      * * * * *

      8.4.2 Integrated Sampling. Evacuate the flexible bag. Set up the equipment as shown in Figure 10-1 with the bag disconnected. Place the probe in the stack and purge the sampling line. Connect the bag, making sure that all connections are leak-free. Sample at a rate proportional to the stack velocity. If needed, the CO2 content of the gas may be determined by using the Method 3 integrated sample procedures, or by weighing an ascarite CO2 removal tube used and computing CO2 concentration from the gas volume sampled and the weight gain of the tube. Data may be recorded on a form similar to Table 10-1. If a tank is used for sample collection, follow procedures similar to those in Sections 8.1.2, 8.2.3, 8.3, and 12.4 of Method 25 as appropriate to prepare the tank, conduct the sampling, and correct the measured sample concentration.

      * * * * *

    44. Amend Method 10A of Appendix A-4 to Part 60 as follows:

      1. By revising Section 2.0.

      2. By revising Sections 8.2.1 and 8.2.3.

      3. By revising Sections 11.1 and 11.2.

      4. By revising the narrative in Section 12.3.

      5. By revising Section 13.5.

      Method 10A--Determination of Carbon Monoxide Emissions in Certifying Continuous Emission Monitoring Systems at Petroleum Refineries

      * * * * *

      2.0 Summary of Method

      An integrated gas sample is extracted from the stack, passed through an alkaline permanganate solution to remove sulfur oxides and nitrogen oxides, and collected in a Tedlar or equivalent bag. (Contact the bag manufacturer for guidance on the applicability of Tedlar equivalent materials for the compound of interest.) The CO concentration in the sample is measured spectrophotometrically using the reaction of CO with p-sulfaminobenzoic acid.

      * * * * *

      8.2.1 Evacuate the bag completely using a vacuum pump. Assemble the apparatus as shown in Figure 10A-1. Loosely pack glass wool in the tip of the probe. Place 400 ml of alkaline permanganate solution in the first two impingers and 250 ml in the third. Connect the pump to the third impinger, and follow this with the surge tank, rate meter, and 3-way valve. Do not connect the bag to the system at this time.

      * * * * *

      8.2.3 Purge the system with sample gas by inserting the probe into the stack and drawing the sample gas through the system at 300 ml/min 10 percent for 5 minutes. Connect the evacuated bag to the system,

      Page 1158

      record the starting time, and sample at a rate of 300 ml/min for 30 minutes, or until the bag is nearly full. Record the sampling time, the barometric pressure, and the ambient temperature. Purge the system as described above immediately before each sample.

      * * * * *

      11.1 Assemble the system shown in Figure 10A-3, and record the information required in Table 10A-1 as it is obtained. Pipet 10.0 ml of the colorimetric reagent into each gas reaction bulb, and attach the bulbs to the system. Open the stopcocks to the reaction bulbs, but leave the valve to the bag closed. Turn on the pump, fully open the coarse-adjust flow valve, and slowly open the fine-adjust valve until the pressure is reduced to at least 40 mm Hg. Now close the coarse adjust valve, and observe the manometer to be certain that the system is leak-free. Wait a minimum of 2 minutes. If the pressure has increased less than 1 mm Hg, proceed as described below. If a leak is present, find and correct it before proceeding further.

      11.2 Record the vacuum pressure (Pv) to the nearest 1 mm Hg, and close the reaction bulb stopcocks. Open the bag valve, and allow the system to come to atmospheric pressure. Close the bag valve, open the pump coarse adjust valve, and evacuate the system again. Repeat this fill/evacuation procedure at least twice to flush the manifold completely. Close the pump coarse adjust valve, open the bag valve, and let the system fill to atmospheric pressure. Open the stopcocks to the reaction bulbs, and let the entire system come to atmospheric pressure. Close the bulb stopcocks, remove the bulbs, record the room temperature and barometric pressure (Pbar, to nearest mm Hg), and place the bulbs on the shaker table with their main axis either parallel to or perpendicular to the plane of the table top. Purge the bulb-filling system with ambient air for several minutes between samples. Shake the samples for exactly 2 hours.

      * * * * *

      12.3 CO Concentration in the Bag. Calculate Cb using Equations 10A-2 and 10A-3. If condensate is visible in the bag, calculate Bw using Table 10A-2 and the temperature and barometric pressure in the analysis room. If condensate is not visible, calculate Bw using the temperature and barometric pressure at the sampling site. * * *

      * * * * *

      13.5 Stability. The individual components of the colorimetric reagent are stable for at least one month. The colorimetric reagent must be used within two days after preparation to avoid excessive blank correction. The samples in the bag should be stable for at least one week if the bags are leak-free.

      * * * * *

    45. Amend Method 10B of Appendix A-4 to Part 60 by revising Sections 2.1 and 6.2.3, and by revising the narrative in Section 12.2 to read as follows:

      Method 10B--Determination of Carbon Monoxide Emissions From Stationary Sources

      * * * * *

      2.1 An integrated gas sample is extracted from the sampling point, passed through a conditioning system to remove interferences, and collected in a Tedlar or equivalent bag. (Contact the bag manufacturer for guidance on the applicability of Tedlar equivalent materials for the compound of interest.) The CO is separated from the sample by gas chromatography (GC) and catalytically reduced to methane (CH4) which is determined by flame ionization detection (FID). The analytical portion of this method is identical to applicable sections in Method 25 detailing CO measurement.

      * * * * *

      6.2.3 Sample Injection System. Same as in Method 25, Section 6.3.1.4, equipped to accept a sample line from the bag.

      * * * * *

      12.2 CO Concentration in the Bag. Calculate Cb using Equations 10B-1 and 10B-2. If condensate is visible in the bag, calculate Bw using Table 10A-2 of Method 10A and the temperature and barometric pressure in the analysis room. If condensate is not visible, calculate Bw using the temperature and barometric pressure at the sampling site. * * *

      * * * * *

    46. Amend Method 11 of Appendix A-5 to Part 60 by revising Sections 8.5 and 10.1.2 to read as follows:

      Appendix A-5 to Part 60--Test Methods 11 Through 15A

      * * * * *

      Method 11--Determination of Hydrogen Sulfide Content of Fuel Gas Streams in Petroleum Refineries

      * * * * *

      8.5 Sample for at least 10 minutes. At the end of the sampling time, close the sampling valve, and record the final volume and temperature readings. Conduct a leak-check as described in Section 8.2. A yellow color in the final cadmium sulfate impinger indicates depletion of the absorbing solution. An additional cadmium sulfate impinger should be added for subsequent samples and the sample with yellow color in the final impinger should be voided.

      * * * * *

      10.1.2 Temperature Sensors. Calibrate against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is at a minimum equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    47. Amend Method 12 of Appendix A-5 to Part 60 by revising Section 16.1 and adding Sections 16.4, 16.4.1, and 16.4.2 to read as follows:

      Method 12--Determination of Inorganic Lead Emissions From Stationary Sources

      * * * * *

      16.1 Simultaneous Determination of Particulate Matter and Lead Emissions. Method 12 may be used to simultaneously determine Pb provided: (1) acetone is used to remove particulate from the probe and inside of the filter holder as specified by Method 5, (2) 0.1 N HNO3 is used in the impingers, (3) a glass fiber filter with a low Pb background is used, and (4) the entire train contents, including the impingers, are treated and analyzed for Pb as described in Sections 8.0 and 11.0 of this method.

      * * * * *

      16.4 Alternative Analyzer. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) may be used as an alternative to atomic absorption analysis provided the following conditions are met:

      16.4.1 Sample collection, sample preparation, and analytical preparation procedures are as defined in the method except as necessary for the ICP-AES application.

      16.4.2 The limit of quantitation for the ICP-AES must be demonstrated, and the sample concentrations reported should be no less than two times the limit of quantitation. The limit of quantitation is defined as ten times the standard deviation of the blank value. The standard deviation of the blank value is determined from the analysis of seven blanks. It has been reported that for mercury and those elements that form hydrides, a continuous-flow generator coupled to an ICP-AES offers detection limits comparable to cold vapor atomic absorption.

      * * * * *

    48. Amend Method 14A of Appendix A-5 to Part 60 by adding a sentence to the end of Section 10.1.1 to read as follows:

      Method 14A -- Determination of Total Fluoride Emissions From Selected Sources at Primary Aluminum Production Facilities

      * * * * *

      10.1.1 Metering system. * * * Allowable tolerances for Y and DeltaH@ are given in Figure 5-5 of Method 5 of this appendix.

      * * * * *

    49. Amend Method 16A of Appendix A-6 to Part 60 by revising Section 1.2 to read as follows:

      Appendix A-6 to Part 60--Test Methods 16 Through 18

      * * * * *

      Method 16A--Determination of Total Reduced Sulfur Emissions From Stationary Sources (Impinger Technique)

      * * * * *

      1.2 Applicability. This method is applicable for the determination of TRS emissions from recovery boilers, lime kilns, and smelt dissolving tanks at kraft pulp mills, reduced sulfur compounds (H2S, carbonyl sulfide, and carbon disulfide) from sulfur recovery units at onshore natural gas processing facilities, and from other sources when specified in an applicable subpart of the regulations. The flue gas must contain at least 1 percent oxygen for complete oxidation

      Page 1159

      of all TRS to SO2. Note: If sources other than kraft pulp mills experience low oxygen levels in the emissions, the method results may be biased low.

      * * * * *

    50. Amend Method 18 of Appendix A-6 to Part 60 as follows:

      1. By revising Sections 8.2.1.1.2, 8.2.1.4, 8.2.1.4.2.

      2. By adding 8.2.1.5.2.2.

      3. By revising Sections 16.1.1.12, and 16.1.3.2.

      4. By revising the titles to Figures 18-3 and 18-10.

      Method 18--Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

      * * * * *

      8.2.1.1.2 Sampling Procedure. To obtain a sample, assemble the sample train as shown in Figure 18-9. Leak-check both the bag and the container. Connect the vacuum line from the needle valve to the Teflon sample line from the probe. Place the end of the probe at the centroid of the stack or at a point no closer to the walls than 1 m, and start the pump. Set the flow rate so that the final volume of the sample is approximately 80 percent of the bag capacity. After allowing sufficient time to purge the line several times, connect the vacuum line to the bag, and evacuate until the rotameter indicates no flow. Then position the sample and vacuum lines for sampling, and begin the actual sampling, keeping the rate proportional to the stack velocity. As a precaution, direct the gas exiting the rotameter away from sampling personnel. At the end of the sample period, shut off the pump, disconnect the sample line from the bag, and disconnect the vacuum line from the bag container. Record the source temperature, barometric pressure, ambient temperature, sampling flow rate, and initial and final sampling time on the data sheet shown in Figure 18-10. Protect the bag and its container from sunlight. Record the time lapsed between sample collection and analysis, and then conduct the recovery procedure in Section 8.4.2.

      * * * * *

      8.2.1.4 Other Modified Bag Sampling Procedures. In the event that condensation is observed in the bag while collecting the sample and a direct interface system cannot be used, heat the bag during collection and maintain it at a suitably elevated temperature during all subsequent operations. (Note: Take care to leak-check the system prior to the dilutions so as not to create a potentially explosive atmosphere.) As an alternative, collect the sample gas, and simultaneously dilute it in the bag.

      * * * * *

      8.2.1.4.2 Second Alternative Procedure. Prefill the bag with a known quantity of inert gas. Meter the inert gas into the bag according to the procedure for the preparation of gas concentration standards of volatile liquid materials (Section 10.1.2.2), but eliminate the midget impinger section. Take the partly filled bag to the source, and meter the source gas into the bag through heated sampling lines and a heated flowmeter, or Teflon positive displacement pump. Verify the dilution factors before sampling each bag through dilution and analysis of gases of known concentration.

      * * * * *

      8.2.1.5.2.2 Analyze the two field audit samples as described in Section 9.2 by connecting each bag containing an audit gas mixture to the sampling valve. Calculate the results; record and report the data to the audit supervisor.

      * * * * *

      16.1.1.12 Flexible Bags. Tedlar or equivalent, 10- and 50-liter capacity, for preparation of standards. (Contact the bag manufacturer for guidance on the applicability of Tedlar equivalent materials for the compound of interest.)

      * * * * *

      16.1.3.2 Flexible Bag Procedure. Any leak-free plastic (e.g., Tedlar, Mylar, Teflon) or plastic-coated aluminum (e.g., aluminized Mylar) bag, or equivalent, can be used to obtain the pre-survey sample. Use new bags, and leak-check them before field use. In addition, check the bag before use for contamination by filling it with nitrogen or air and analyzing the gas by GC at high sensitivity. Experience indicates that it is desirable to allow the inert gas to remain in the bag about 24 hours or longer to check for desorption of organics from the bag. Follow the leak-check and sample collection procedures given in Section 8.2.1.

      * * * * *

      Figure 18-3. Preparation of Standards in Tedlar or Tedlar-Equlivalent Bags and Calibration Curve

      * * * * *

      Figure 18-10. Field Sample Data Sheet--Tedlar or Tedlar-

      Equivalent Bag Collection Method

      * * * * *

    51. Amend Method 23 of Appendix A-7 to Part 60 by revising Sections 2.2.7, 4.1.1.3, and 4.2.7 to read as follows:

      Appendix A-7 to Part 60--Test Methods 19 Through 25E

      * * * * *

      Method 23--Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans From Stationary Sources

      * * * * *

      2.2.7 Storage Container. Air-tight container to store silica gel.

      * * * * *

      4.1.1.3 Sample Train. It is suggested that all components be maintained according to the procedure described in APTD-0576. Alternative mercury-free thermometers may be used if the thermometers are, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

      4.2.7 Silica Gel. Note the color of the indicating silica gel to determine if it has been completely spent and make a mention of its condition. Transfer the silica gel from the fifth impinger to its original container and seal. If a moisture determination is made, follow the applicable procedures in sections 8.7.6.3 and 11.2.3 of Method 5 to handle and weigh the silica gel. If moisture is not measured, the silica gel may be disposed.

      * * * * *

    52. Amend Method 24 of Appendix A-7 to Part 60 by revising Section 11.2.2 to read as follows:

      Method 24--Determination of Volatile Matter Content, Water Content, Density, Volume Solids, and Weight Solids of Surface Coatings

      * * * * *

      11.2.2 Volatile Content. To determine total volatile content, use the apparatus and reagents described in ASTM D2369 (incorporated by reference; see Sec. 60.17 for the approved versions of the standard), respectively, and use the following procedures:

      * * * * *

    53. Amend Method 25 of Appendix A-7 to Part 60 by revising Section 7.1.3 to read as follows:

      Method 25--Determination of Total Gaseous Nonmethane Organic Emissions as Carbon

      * * * * *

      7.1.3 Filters. Glass fiber filters, without organic binder, exhibiting at least 99.95 percent efficiency (w = Moisture content in the sample, fraction.

      CN2 = Measured N2 concentration (by Method 3C), fraction.

      CN2Corr = Measured N2 concentration corrected for dilution, fraction.

      Ct = Calculated NMOC concentration, ppmv C equivalent.

      Ctm = Measured NMOC concentration, ppmv C equivalent.

      Pb = Barometric pressure, mm Hg.

      Pt = Gas sample tank pressure after sampling, but before pressurizing, mm Hg absolute.

      Ptf = Final gas sample tank pressure after pressurizing, mm Hg absolute.

      Pti = Gas sample tank pressure after evacuation, mm Hg absolute.

      Pw = Vapor pressure of H2O (from Table 25C-1), mm Hg.

      r = Total number of analyzer injections of sample tank during analysis (where j = injection number, 1 * * * r).

      Tt = Sample tank temperature at completion of sampling, degK.

      Tti = Sample tank temperature before sampling, degK.

      Ttf = Sample tank temperature after pressurizing, degK.

      * * * * *

      12.3 Measured N2 Concentration Correction. Use the following equation to correct the measured concentration of N2 as determined by Method 3C for dilution.

      GRAPHIC TIFF OMITTED TP09JA12.039

      * * * * *

    54. Amend Method 25D of Appendix A-7 to Part 60 by revising the first sentence in Section 9.1 to read as follows:

      Method 25D--Determination of the Volatile Organic Concentration of Waste Samples

      * * * * *

      9.1 Quality Control Samples. If audit samples are not available, prepare and analyze the two types of quality control samples (QCS) listed in Sections 9.1.1 and 9.1.2. * * *

      * * * * *

    55. Amend Method 26 of Appendix A-8 as follows:

      1. By revising Sections 6.1.1 and 8.1.2.

      2. By redesignating Sections 16 and 17 as Sections 17 and 18, respectively.

      3. By adding a new Section 16.

      Appendix A-8 to Part 60--Test Methods 26 Through 30B

      * * * * *

      Method 26--Determination of Hydrogen Halide and Halogen Emissions From Stationary Sources Non-Isokinetic Method

      * * * * *

      6.1.1 Probe. Borosilicate glass, approximately \3/8\-in. (9-mm) I.D. with a heating system capable of maintaining a probe gas temperature during sampling of 120 14 degC (248 25 degF) to prevent moisture condensation; or Teflon where stack probes are below 210 degC. If HF is a target analyte, then preconditioning of new teflon components by heating should be considered to prevent potential HF outgassing. A Teflon-glass filter in a mat configuration should be installed in the gas stream, not the filter box, to remove particulate matter from the gas stream (see Section 6.1.6).

      * * * * *

      8.1.2 Adjust the probe temperature and the temperature of the filter and the stopcock (i.e., the heated area in Figure 26-1) to a temperature sufficient to prevent water condensation. This temperature should be greater than 120 degC (248 degF). The temperature should be monitored throughout a sampling run to ensure that the desired temperature is maintained. It is important to maintain a temperature around the probe and filter of greater than 120 degC (248 degF) since it is extremely difficult to purge acid gases off these components. (These components are not quantitatively recovered and, hence, any collection of acid gases on these components would result in potential underreporting of these emissions. The applicable subparts may specify alternative higher temperatures.)

      * * * * *

      16.0 Alternative Procedures

      Method 26A. Method 26A, which uses isokinetic sampling equipment, is an acceptable alternative to Method 26.

      * * * * *

    56. Amend Method 29 of Appendix A-8 as follows:

      1. By redesignating Sections 16 and 17 as Sections 17 and 18, respectively.

      2. By adding a new Section 16.

      Method 29--Determination of Metals Emissions From Stationary Sources

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Analyzer. Samples may also be analyzed by cold vapor atomic fluorescence spectrometry.

      * * * * *

    57. Amend Method 30B of Appendix A-8 to Part 60 as follows:

      1. By revising the first paragraph in Section 8.2.2.1.

      2. By revising Table 9-1 in Section 9.

      3. By revising Section 10.3.

      4. By revising the first paragraph in Section 11.3.

      Method 30B--Determination of Total Vapor Phase Mercury Emissions From Coal-Fired Combustion Sources Using Carbon Sorbent Traps

      * * * * *

      8.2.2.1 Determination of Minimum Calibration Concentration or Mass. Based on your instrument's sensitivity and linearity, determine the calibration concentrations or masses that make up a representative low level calibration range. Verify that you are able to meet the multipoint calibration performance criteria in section 11.0 of this method. Select a calibration concentration or mass that is no less than 2 times the lowest concentration or mass in your calibration curve. The lowest point in your calibration curve must be at least 5, and preferably 10, times the Method Detection Limit (MDL), which is the minimum amount of the analyte that can be detected and reported. The MDL must be determined at least once for the analytical system using an MDL study such as that found in section 15.0 of the EPA Method 301 (76 FR 28673, 5/18/2011). * * *

      * * * * *

      9.0 Quality Assurance and Quality Control

      * * * * *

      Page 1161

      Table 9-1--Quality Assurance/Quality Control Criteria for Method 30B

      ----------------------------------------------------------------------------------------------------------------

      QA/QC test or specification Acceptance criteria Frequency Consequences if not met

      ----------------------------------------------------------------------------------------------------------------

      Gas flow meter calibration (At 3 Calibration factor (Yi) Prior to initial use Recalibrate at 3 points

      settings or points). at each flow rate must and when post-test until the acceptance

      be within check is not within criteria are met.

      2% of the average 5% of Y.

      value (Y).

      Gas flow meter post-test calibration Calibration factor (Yi) After each field test. Recalibrate gas flow

      check (Single-point). must be within 5% of the Y must be done on-site, determine a new value

      value from the most using stack gas. of Y. For mass flow

      recent 3-point meters, must be done

      calibration. on-site, using stack

      gas. Apply the new Y

      value to the field

      test data.

      Temperature sensor calibration....... Absolute temperature Prior to initial use Recalibrate; sensor may

      measures by sensor and before each test not be used until

      within thereafter. specification is met.

      1.5% of a reference

      sensor.

      Barometer calibration................ Absolute pressure Prior to initial use Recalibrate; instrument

      measured by instrument and before each test may not be used until

      within 10 thereafter. specification is met.

      mm Hg of reading with

      a mercury barometer or

      NIST traceable

      barometer.

      Pre-test leak check.................. before analyzing any successful.

      10% of true value and samples.

      r\2\>= 0.99.

      Analysis of independent calibration Within 10% Following daily Recalibrate and repeat

      standard. of true value. calibration, prior to independent standard

      analyzing field analysis until

      samples. successful.

      Analysis of continuing calibration Within 10% Following daily Recalibrate and repeat

      verification standard (CCVS). of true value. calibration, after independent standard

      analyzing 20% Each individual sample. Sample invalidated.

      of total volume

      sampled during field

      recovery test.

      Sorbent trap section 2 breakthrough.. For compliance/ Every sample........... Sample invalidated.*

      emissions testing:

      1

      mug/dscm;

      1

      mug/dscm;

      0.5

      mug/dscm;

      0.1 mug/

      dscm;

      No criterion for Hg

      concentrations 1 mug/dscm;

      = possible, samples

      curve). 0.5 mug/dscm. invalidated if not

      within calibrated

      range.

      Sample analysis...................... Within bounds of Hg\0\ All Section 1 samples Expand bounds of Hg\0\

      and HgCl2 Analytical where stack Hg and HgCl2 Analytical

      Bias Test. concentration is >= Bias Test; if not

      0.5 mug/dscm. successful, samples

      invalidated.

      Page 1162

      Field recovery test.................. Average recovery Once per field test.... Field sample runs not

      between 85% and 115% validated without

      for Hg\0\. successful field

      recovery test.

      ----------------------------------------------------------------------------------------------------------------

      * And data from the pair of sorbent traps are also invalidated.

      * * * * *

      10.3 Thermocouples and Other Temperature Sensors. Use the procedures and criteria in Section 10.3 of Method 2 in Appendix A-1 to this part to calibrate in-stack temperature sensors and thermocouples. Dial thermometers shall be calibrated against mercury-in-glass thermometers or equivalent. * * *

      * * * * *

      11.3 Field Sample Analyses. Analyze the sorbent trap samples following the same procedures that were used for conducting the Hg\0\ and HgCl2 analytical bias tests. The individual sections of the sorbent trap and their respective components must be analyzed separately (i.e., section 1 and its components, then section 2 and its components). All sorbent trap section 1 sample analyses must be within the calibrated range of the analytical system as specified in Table 9-1. For wet analyses, the sample can simply be diluted to fall within the calibrated range. However, for the destructive thermal analyses, samples that are not within the calibrated range cannot be re-analyzed. As a result, the sample cannot be validated, and another sample must be collected. It is strongly suggested that the analytical system be calibrated over multiple ranges so that thermally analyzed samples do fall within the calibrated range. The total mass of Hg measured in each sorbent trap section 1 must also fall within the lower and upper mass limits established during the initial Hg\0\ and HgCl2 analytical bias test. If a sample is analyzed and found to fall outside of these limits, it is acceptable for an additional Hg\0\ and HgCl2 analytical bias test to be performed that now includes this level. However, some samples (e.g., the mass collected in trap section 2), may have Hg levels so low that it may not be possible to quantify them in the analytical system's calibrated range. Because a reliable estimate of these low-level Hg measurements is necessary to fully validate the emissions data, the MDL (see section 8.2.2.1 of this method) is used to establish the minimum amount that can be detected and reported. If the measured mass or concentration is below the lowest point in the calibration curve and above the MDL, the analyst must do the following: Estimate the mass or concentration of the sample based on the analytical instrument response relative to an additional calibration standard at a concentration or mass between the MDL and the lowest point in the calibration curve. This is accomplished by establishing a response factor (e.g., area counts per Hg mass or concentration) and estimating the amount of Hg present in the sample based on the analytical response and this response factor. * * *

      * * * * *

    58. Amend Performance Specification 1 of Appendix B to Part 60 by revising Section 3.5 to read as follows:

      Appendix B to Part 60--Performance Specifications

      * * * * *

      Performance Specification 1--Specifications and Test Procedures for Continuous Opacity Monitoring Systems in Stationary Sources

      * * * * *

      3.5 Full Scale. The maximum data display output of the COMS. For purposes of recordkeeping and reporting, full scale will be greater than 80 percent opacity.

      Note: ``Full scale'' means ``span.''

      * * * * *

    59. Amend Performance Specification 3 of Appendix B to Part 60 by revising Section 13.2 to read as follows:

      Performance Specification 3--Specifications and Test Procedures for O2 and CO2 Continuous Emission Monitoring Systems in Stationary Sources

      * * * * *

      13.2 CEMS Relative Accuracy Performance Specification. The RA of the CEMS must be no greater than 20 percent of the mean value of the RM test data or 1.0 percent O2 or CO2, whichever is greater.

      * * * * *

    60. Amend Performance Specification 4 of Appendix B to Part 60 by revising Section 8.2 to read as follows:

      Performance Specification 4--Specifications and Test Procedures for Carbon Monoxide Continuous Emission Monitoring Systems in Stationary Sources

      * * * * *

      8.2 Reference Methods. Unless otherwise specified in an applicable subpart of the regulation, Method 10, 10A, 10B, or other approved alternative are the RM for this PS.

      * * * * *

    61. Amend Performance Specification 4B of Appendix B to Part 60 by revising Section 7.1.1 to read as follows:

      Performance Specification 4B--Specifications and Test Procedures for Carbon Monoxide and Oxygen Continuous Monitoring Systems in Stationary Sources

      * * * * *

      7.1.1 Calculations. Summarize the results on a data sheet. Average the differences between the instrument response and the certified cylinder gas value for each gas. Calculate the CE results for the CO monitor according to:

      CE = bond d/FS bond x 100 (1)

      Where d is the mean difference between the CEMS response and the known reference concentration, and FS is the span value. The CE for the O2 monitor is the average percent O2 difference between the O2 monitor and the certified cylinder gas value for each gas.

      * * * * *

    62. Amend Performance Specification 7 of Appendix B to Part 60 by revising Section 8.4 and adding a reference to the end of Section 16.0. to read as follows:

      Performance Specification 7--Specifications and Test Procedures for Hydrogen Sulfide Continuous Emission Monitoring Systems in Stationary Sources

      * * * * *

      8.4 Relative Accuracy Test Procedure.

      8.4.1 Sampling Strategy for RM Tests, Number of RM Tests, Correlation of RM and CEMS Data, and Calculations. These are the same as that in PS-2, Sections 8.4.3 (except as specified below), 8.4.4, 8.4.5, and 8.4.6, respectively.

      8.4.2 Reference Methods. Unless otherwise specified in an applicable subpart of the regulation, Methods 11, 15, and 16 may be used for the RM for this PS.

      8.4.2.1 Sampling Time Per Run--Method 11. A sampling run, when Method 11 (integrated sampling) is used, shall consist of a single measurement for at least 10 minutes and 0.010 dscm (0.35 dscf). Each sample shall be taken at approximately 30-minute intervals.

      8.4.2.2 Sampling Time Per Run--Methods 15 and 16. The sampling run shall consist of two injections equally spaced over a 30-minute period following the procedures described in the particular method.

      Note: Caution! Heater or non-approved electrical probes should not be used around explosive or flammable sources.

      * * * * *

      16.0 References

      * * * * *

    63. Letter to RAMCON Environmental Corp. from Robert Kellam, December 27, 1992.

      * * * * *

    64. Amend Performance Specification 11 of Appendix B to Part 60 by revising Sections 12.1(1) and (2) to read as follows:

      Page 1163

      Performance Specification 11--Specifications and Test Procedures for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources

      * * * * *

      12.1 * * *

      (1) Calculate the upscale drift (UD) using Equation 11-1:

      GRAPHIC TIFF OMITTED TP09JA12.040

      Where:

      UD = The upscale (high-level) drift of your PM CEMS in percent,

      RCEM= The measured PM CEMS response to the upscale reference standard, and

      RU= The pre-established numerical value of the upscale reference standard.

      FS = Full-scale value.

      (2) Calculate the zero drift (ZD) using Equation 11-2:

      GRAPHIC TIFF OMITTED TP09JA12.041

      Where:

      ZD = The zero (low-level) drift of your PM CEMS in percent,

      RCEM= The measured PM CEMS response to the zero reference standard,

      RL = The pre-established numerical value of the zero reference standard, and

      FS = Full-scale value.

      * * * * *

    65. Amend Performance Specification 15 of Appendix B to Part 60 by revising Sections 11.1.1.4.2 and 11.1.1.4.3 to read as follows:

      Performance Specification 15--Performance Specification for Extractive FTIR Continuous Emission Monitoring Systems in Stationary Sources

      * * * * *

      11.1.1.4.2 RMs Using a Grab Sampling Technique. Synchronize the RM and FTIR CEM measurements as closely as possible. For a grab sampling RM, record the volume collected and the exact sampling period for each sample. Synchronize the FTIR CEM so that the FTIR measures a spectrum of a similar cell volume at the same time as the RM grab sample was collected. Measure at least five independent samples with both the FTIR CEM and the RM for each of the minimum nine runs. Compare the run concentration averages by using the relative accuracy analysis procedure in Performance Specification 2 of Appendix B of 40 CFR part 60.

      11.1.1.4.3 Continuous Emission Monitors as RMs. If the RM is a CEM, synchronize the sampling flow rates of the RM and the FTIR CEM. Each run is at least 1 hour long and consists of at least 10 FTIR CEM measurements and the corresponding 10 RM measurements (or averages). For the statistical comparison, use the relative accuracy analysis procedure in Performance Specification 2 of Appendix B of 40 CFR part 60. If the RM time constant is = Fr >= Optional after initial

      0.8. and subsequent RATAs.

      Page 1164

      Sensor Evaluation Alert Test All.................... See Section 6.1.8...... After each PEMS

      (optional). training.

      ----------------------------------------------------------------------------------------------------------------

      * * * * *

      9.3 Quarterly Relative Accuracy Audits. In the first year of operation after the initial certification, perform a RAA consisting of at least three 30-minute portable analyzer or RM determinations each quarter a RATA is not performed. To conduct a RAA, follow the procedures in Section 8.2 for the relative accuracy test, except that only three sets of measurement data are required, and the statistical tests are not required. The average of the three or more portable analyzer or RM determinations must not exceed the limits given in Section 13.5. Report the data from all sets of measurement data. If a PEMS passes all quarterly RAAs in the first year and also passes the subsequent yearly RATA in the second year, you may elect to perform a single mid-year RAA in the second year in place of the quarterly RAAs. This option may be repeated, but only until the PEMS fails either a mid-year RAA or a yearly RATA. When such a failure occurs, you must resume quarterly RAAs in the quarter following the failure and continue conducting quarterly RAAs until the PEMS successfully passes both a year of quarterly RAAs and a subsequent RATA.

      9.4 Yearly Relative Accuracy Test. Perform a minimum 9-run RATA at the normal operating level on a yearly basis in the quarter that the RAA is not performed. The statistical tests in Section 8.3 are not required for the yearly RATA.

      * * * * *

      12.4 Relative Accuracy Audit. Calculate the quarterly RAA using Equation 16-9.

      GRAPHIC TIFF OMITTED TP09JA12.042

      * * * * *

      13.5 Relative Accuracy Audits. The average of the three portable analyzer or RM determinations must not differ from the simultaneous PEMS average value by more than 10 percent of the analyzer or RM for concentrations greater than 100 ppm or 20 percent for concentrations between 100 and 20 ppm, or the test is failed. For measurements at 20 ppm or less, this difference must not exceed 2 ppm for a pollutant PEMS and 1 percent absolute for a diluents PEMS.

      * * * * *

    66. Amend Procedure 1 of Appendix F to Part 60 by revising Section 6.2 to read as follows:

      Appendix F to Part 60--Quality Assurance Procedures

      Procedure 1--Quality Assurance Requirements for Gas Continuous Emission Monitoring Systems Used for Compliance Determination

      * * * * *

      6.2 RAA Accuracy Calculation. Use the calculation procedure in the relevant performance specification to calculate the accuracy for the RAA. The RAA must be calculated in the units of the applicable emission standard.

      * * * * *

    67. Amend Procedure 2 of Appendix F to Part 60 by revising paragraphs (3) and (4) in Section 12.0 to read as follows:

      Procedure 2--Quality Assurance Requirements for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources

      * * * * *

      12.0 * * *

      (3) How do I calculate daily upscale and zero drift? You must calculate the upscale drift using Equation 2-2 and the zero drift using Equation 2-3:

      GRAPHIC TIFF OMITTED TP09JA12.043

      Where:

      UD = The upscale drift of your PM CEMS, in percent,

      RCEM = Your PM CEMS response to the upscale check value, and

      RU = The upscale check value.

      FS = Full-scale value.

      GRAPHIC TIFF OMITTED TP09JA12.044

      Where:

      ZD = The zero (low-level) drift of your PM CEMS, in percent,

      RCEM = Your PM CEMS response of the zero check value,

      RL = The zero check value, and

      (4) How do I calculate SVA accuracy? You must use Equation 2-4 to calculate the accuracy, in percent, for each of the three SVA tests or the daily sample volume check:

      GRAPHIC TIFF OMITTED TP09JA12.045

      Page 1165

      Where:

      VM = Sample gas volume determined/reported by your PM CEMS (e.g., dscm),

      VR = Sample gas volume measured by the independent calibrated reference device (e.g., dscm) for the SVA or the reference value for the daily sample volume check.

      Note: Before calculating SVA accuracy, you must correct the sample gas volumes measured by your PM CEMS and the independent calibrated reference device to the same basis of temperature, pressure, and moisture content. You must document all data and calculations.

      * * * * *

    68. Amend Procedure 5 of Appendix F to Part 60 by redesignating the second listing of Section 6.2.6 as Section 6.2.7.

      PART 61--NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

    69. The authority citation for Part 61 continues to read as follows:

      Authority: 42 U.S.C. 7401, et seq.

    70. Amend Sec. 61.13 by revising paragraph (e)(1)(i) to read as follows:

      Sec. 61.13 Emission tests and waiver of emission tests.

      * * * * *

      (e) * * *

      (1) * * *

      (i) The source owner, operator, or representative of the tested facility shall obtain an audit sample, if commercially available, from an AASP for each test method used for regulatory compliance purposes. No audit samples are required for the following test methods: Methods 3A and 3C of Appendix A-3 of Part 60; Methods 6C, 7E, 9, and 10 of Appendix A-4 of Part 60; Method 18 and 19 of Appendix A-6 of Part 60; Methods 20, 22, and 25A of Appendix A-7 of Part 60; and Methods 303, 318, 320, and 321 of Appendix A of Part 63. If multiple sources at a single facility are tested during a compliance test event, only one audit sample is required for each method used during a compliance test. The compliance authority responsible for the compliance test may waive the requirement to include an audit sample if they believe that an audit sample is not necessary. ``Commercially available'' means that two or more independent AASPs have blind audit samples available for purchase. If the source owner, operator, or representative cannot find an audit sample for a specific method, the owner, operator, or representative shall consult the EPA Web site at the following URL, www.epa.gov/ttn/emc, to confirm whether there is a source that can supply an audit sample for that method. If the EPA Web site does not list an available audit sample at least 60 days prior to the beginning of the compliance test, the source owner, operator, or representative shall not be required to include an audit sample as part of the quality assurance program for the compliance test. When ordering an audit sample, the source owner, operator, or representative shall give the sample provider an estimate for the concentration of each pollutant that is emitted by the source or the estimated concentration of each pollutant based on the permitted level and the name, address, and phone number of the compliance authority. The source owner, operator, or representative shall report the results for the audit sample along with a summary of the emission test results for the audited pollutant to the compliance authority and shall report the results of the audit sample to the AASP. The source owner, operator, or representative shall make both reports at the same time and in the same manner or shall report to the compliance authority first and report to the AASP. If the method being audited is a method that allows the samples to be analyzed in the field and the tester plans to analyze the samples in the field, the tester may analyze the audit samples prior to collecting the emission samples provided a representative of the compliance authority is present at the testing site. The tester may request, and the compliance authority may grant, a waiver to the requirement that a representative of the compliance authority must be present at the testing site during the field analysis of an audit sample. The source owner, operator, or representative may report the results of the audit sample to the compliance authority and then report the results of the audit sample to the AASP prior to collecting any emission samples. The test protocol and final test report shall document whether an audit sample was ordered and utilized and the pass/fail results as applicable.

      * * * * *

    71. Amend Sec. 61.33 by revising paragraph (a) to read as follows:

      Sec. 61.33 Stack sampling.

      (

      1. Unless a waiver of emission testing is obtained under Sec. 61.13, each owner or operator required to comply with Sec. 61.32(a) shall test emissions from the source according to Method 104 of Appendix B to this part or according to Method 29 of Appendix A to Part 60. Method 103 of Appendix B to this part is approved by the Administrator as an alternative method for sources subject to Sec. 61.32(a). The emission test shall be performed:

      (1) Within 90 days of the effective date in the case of an existing source or a new source which has an initial startup date preceding the effective date; or

      (2) Within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.

      * * * * *

    72. Amend Sec. 61.42 by revising paragraph (a) to read as follows:

      Sec. 61.42 Emission standard.

      (

      1. Emissions to the atmosphere from rocket-motor test sites shall not cause time-weighted atmospheric concentrations of beryllium to exceed 75 microgram minutes per cubic meter (mug-min/m \3\) (4.68 x 10-9 pound minutes per cubic foot (lb-min/ft \3\)) of air within the limits of 10 to 60 minutes, accumulated during any 2 consecutive weeks, in any area in which an adverse effect to public health could occur.

      * * * * *

    73. Amend Sec. 61.53 by revising paragraph (d)(2) to read as follows:

      Sec. 61.53 Stack sampling.

      * * * * *

      (d) * * *

      (2) Method 101A in Appendix B or Method 29 in Appendix A to part 60 shall be used to test emissions as follows:

      * * * * *

    74. Amend Sec. 61.164 by revising paragraphs (d)(2)(i), (e)(1)(i), and (e)(2) to read as follows:

      Sec. 61.164 Test methods and procedures.

      * * * * *

      (d) * * *

      (2) * * *

      (i) Use Method 108 in Appendix B to this part or Method 29 in Appendix A to part 60 for determining the arsenic emission rate, g/hr (lb/hr). The emission rate shall equal the arithmetic mean of the results of three 60-minute test runs.

      * * * * *

      (e) * * *

      (1) * * *

      (i) Use Method 108 in Appendix B to this part or Method 29 in Appendix A to part 60 to determine the concentration of arsenic in the gas streams entering and exiting the control device. Conduct three 60-

      minute test runs, each consisting of simultaneous testing of the inlet and outlet gas streams. The gas streams shall contain all the gas exhausted from the glass melting furnace.

      * * * * *

      (2) Calculate the percent emission reduction for each run as follows:

      Page 1166

      GRAPHIC TIFF OMITTED TP09JA12.046

      Where:

      D = the percent emission reduction.

      Cb = the arsenic concentration of the stack gas entering the control device, as measured by Method 108 or Method 29.

      Ca = the arsenic concentration of the stack gas exiting the control device, as measured by Method 108 or Method 29.

      * * * * *

    75. Amend Method 101 of Appendix B to Part 61 by redesignating Sections 16 and 17 as Sections 17 and 18, respectively; and by adding a new Section 16 to read as follows:

      Appendix B to Part 61--Test Methods

      * * * * *

      Method 101--Determination of Particulate and Gaseous Mercury Emissions From Chlor-Alkali Plants (Air Streams)

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Analyzer. Samples may also be analyzed by cold vapor atomic fluorescence spectrometry.

      * * * * *

    76. Amend Method 101A of Appendix B to Part 61 by redesignating Sections 16 and 17 as Sections 17 and 18, respectively; and by adding a new Section 16 to read as follows:

      Method 101A--Determination of Particulate and Gaseous Mercury Emissions From Sewage Sludge Incinerators

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Analyzers.

      16.1.1 Inductively coupled plasma-atomic emission spectrometry (ICP-AES) may be used as an alternative to atomic absorption analysis provided the following conditions are met:

      16.1.1.1 Sample collection, sample preparation, and analytical preparation procedures are as defined in the method except as necessary for the ICP-AES application.

      16.1.1.2 The quality control procedures are conducted as prescribed.

      16.1.1.3 The limit of quantitation for the ICP-AES must be demonstrated and the sample concentrations reported should be no less than two times the limit of quantitation. The limit of quantitation is defined as ten times the standard deviation of the blank value. The standard deviation of the blank value is determined from the analysis of seven blanks. It has been reported that for mercury and those elements that form hydrides, a continuous-flow generator coupled to an ICP-AES offers detection limits comparable to cold vapor atomic absorption.

      6.1.2 Samples may also be analyzed by cold vapor atomic fluorescence spectrometry.

      * * * * *

    77. Amend Method 102 in Appendix B to Part 61 by revising Section 8.1.1.1 to read as follows:

      Method 102--Determination of Particulate and Gaseous Mercury Emissions From Chlor-Alkali Plants (Hydrogen Streams)

      * * * * *

      8.1.1.1 Calibrate the meter box orifice. Use the techniques described in APTD-0576 (see Reference 9 in Section 17.0 of Method 5 of Appendix A to Part 60). Calibration of the orifice meter at flow conditions that simulate the conditions at the source is suggested. Calibration should either be done with hydrogen or with some other gas having a similar Reynolds Number so that there is similarity between the Reynolds Numbers during calibration and during sampling. Alternative mercury-free thermometers may be used if the thermometers are, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    78. Amend Method 104 in Appendix B to Part 61 as follows:

      1. By revising Section 4.1.

      2. By revising Section 11.5.3.

      3. By redesignating Sections 16 and 17 as Sections 17 and 18 respectively.

      4. By adding a new Section 16.

      Method 104--Determination of Beryllium Emissions From Stationary Sources

      * * * * *

      4.1 Matrix Effects. Analysis for Be by flame atomic absorption spectrophotometry is sensitive to the chemical composition and to the physical properties (e.g., viscosity, pH) of the sample. Aluminum and silicon, in particular, are known to interfere when present in appreciable quantities. The analytical procedure includes (optionally) the use of the Method of Standard Additions to check for these matrix effects, and sample analysis using the Method of Standard Additions if significant matrix effects are found to be present (see Reference 2 in Section 17.0).

      * * * * *

      11.5.3 Check for Matrix Effects (optional). Use the Method of Standard Additions (see Reference 2 in Section 17.0) to check at least one sample from each source for matrix effects on the Be results. If the results of the Method of Standard Additions procedure used on the single source sample do not agree to within 5 percent of the value obtained by the routine atomic absorption analysis, then reanalyze all samples from the source using the Method of Standard Additions procedure.

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Analyzer. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) may be used as an alternative to atomic absorption analysis provided the following conditions are met:

      16.1.1 Sample collection, sample preparation, and analytical preparation procedures are as defined in the method except as necessary for the ICP-AES application.

      16.1.2 Quality Assurance/Quality Control procedures, including audit material analysis, are conducted as prescribed in the method. The QA acceptance conditions must be met.

      16.1.3 The limit of quantitation for the ICP-AES must be demonstrated and the sample concentrations reported should be no less than two times the limit of quantitation. The limit of quantitation is defined as ten times the standard deviation of the blank value. The standard deviation of the blank value is determined from the analysis of seven blanks. It has been reported that for mercury and those elements that form hydrides, a continuous-flow generator coupled to an ICP-AES offers detection limits comparable to cold vapor atomic absorption.

      * * * * *

    79. Amend Method 108 of Appendix B to Part 61 by redesignating Sections 16 and 17 as Sections 17 and 18 respectively, and by adding a new Section 16 to read as follows:

      Method 108--Determination of Particulate and Gaseous Arsenic Emissions

      * * * * *

      16.0 Alternative Procedures

      16.1 Alternative Analyzer. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) may be used as an alternative to atomic absorption analysis provided the following conditions are met:

      16.1.1 Sample collection, sample preparation, and analytical preparation procedures are as defined in the method except as necessary for the ICP-AES application.

      16.1.2 Quality Assurance/Quality Control procedures, including audit material analysis, are conducted as prescribed in the method. The QA acceptance conditions must be met.

      16.1.3 The limit of quantitation for the ICP-AES must be demonstrated and the sample concentrations reported should be no less than two times the limit of quantitation. The limit of quantitation is defined as ten times the standard deviation of the blank value. The standard deviation of the blank value is determined from the analysis of seven blanks. It has been reported that for mercury and those elements that form hydrides, a continuous-flow generator coupled to an ICP-AES offers detection limits comparable to cold vapor atomic absorption.

      * * * * *

    80. Amend Method 108A of Appendix B to Part 61 by redesignating Sections 16 and 17 as Sections 17 and 18 respectively, and by adding a new Section 16 to read as follows:

      Method 108A--Determination of Arsenic Content in Ore Samples From Nonferrous Smelters

      * * * * *

      Page 1167

      16.0 Alternative Procedures

      16.1 Alternative Analyzer. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) may be used as an alternative to atomic absorption analysis provided the following conditions are met:

      16.1.1 Sample collection, sample preparation, and analytical preparation procedures are as defined in the method except as necessary for the ICP-AES application.

      16.1.2 Quality Assurance/Quality Control procedures, including audit material analysis, are conducted as prescribed in the method. The QA acceptance conditions must be met.

      16.1.3 The limit of quantitation for the ICP-AES must be demonstrated and the sample concentrations reported should be no less than two times the limit of quantitation. The limit of quantitation is defined as ten times the standard deviation of the blank value. The standard deviation of the blank value is determined from the analysis of seven blanks. It has been reported that for mercury and those elements that form hydrides, a continuous-flow generator coupled to an ICP-AES offers detection limits comparable to cold vapor atomic absorption.

      * * * * *

      PART 63--NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

    81. The authority citation for part 63 continues to read as follows:

      Authority: 42 U.S.C. 7401 et seq.

    82. Amend Sec. 63.7 by revising paragraph (c)(2)(iii)(A) to read as follows:

      Sec. 63.7 Performance testing requirements.

      * * * * *

      (c) * * *

      (2) * * *

      (iii) * * *

      (

  73. The source owner, operator, or representative of the tested facility shall obtain an audit sample, if commercially available, from an AASP for each test method used for regulatory compliance purposes. No audit samples are required for the following test methods: Methods 3A and 3C of Appendix A-3 of Part 60; Methods 6C, 7E, 9, and 10 of Appendix A-4 of Part 60; Methods 18 and 19 of Appendix A-6 of Part 60; Methods 20, 22, and 25A of Appendix A-7 of Part 60; and Methods 303, 318, 320, and 321 of Appendix A of Part 63. If multiple sources at a single facility are tested during a compliance test event, only one audit sample is required for each method used during a compliance test. The compliance authority responsible for the compliance test may waive the requirement to include an audit sample if they believe that an audit sample is not necessary. ``Commercially available'' means that two or more independent AASPs have blind audit samples available for purchase. If the source owner, operator, or representative cannot find an audit sample for a specific method, the owner, operator, or representative shall consult the EPA web site at the following URL, www.epa.gov/ttn/emc, to confirm whether there is a source that can supply an audit sample for that method. If the EPA web site does not list an available audit sample at least 60 days prior to the beginning of the compliance test, the source owner, operator, or representative shall not be required to include an audit sample as part of the quality assurance program for the compliance test. When ordering an audit sample, the source owner, operator, or representative shall give the sample provider an estimate for the concentration of each pollutant that is emitted by the source or the estimated concentration of each pollutant based on the permitted level and the name, address, and phone number of the compliance authority. The source owner, operator, or representative shall report the results for the audit sample along with a summary of the emission test results for the audited pollutant to the compliance authority and shall report the results of the audit sample to the AASP. The source owner, operator, or representative shall make both reports at the same time and in the same manner or shall report to the compliance authority first and report to the AASP. If the method being audited is a method that allows the samples to be analyzed in the field and the tester plans to analyze the samples in the field, the tester may analyze the audit samples prior to collecting the emission samples provided a representative of the compliance authority is present at the testing site. The tester may request, and the compliance authority may grant, a waiver to the requirement that a representative of the compliance authority must be present at the testing site during the field analysis of an audit sample. The source owner, operator, or representative may report the results of the audit sample to the compliance authority and then report the results of the audit sample to the AASP prior to collecting any emission samples. The test protocol and final test report shall document whether an audit sample was ordered and utilized and the pass/fail results as applicable.

    * * * * *

    1. Amend Sec. 63.8 by adding a sentence to the end of paragraph (f)(6)(iii) to read as follows:

      Sec. 63.8 Monitoring requirements.

      * * * * *

      (f) * * *

      (6) * * *

      (iii) * * * The Administrator will review the notification and may rescind permission to use an alternative and require the owner or operator to conduct a relative accuracy test of the CEMS as specified in section 8.4 of Performance Specification 2.

      * * * * *

    2. Amend Sec. 63.144 by adding paragraphs (b)(5)(i)(G) and (b)(5)(i)(H) to read as follows:

      Sec. 63.144 Process wastewater provisions--test methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control).

      * * * * *

      (b) * * *

      (5) * * *

      (i) * * *

      (G) Method 8260B. Use procedures specified in Method 8260B in the SW-846 Compendium of Methods.

      (H) Method 316. Use Method 316 to determine formaldehyde concentration.

      * * * * *

    3. Amend Sec. 63.344 by adding paragraph (c)(5) to read as follows:

      Sec. 63.344 Performance test requirements and test methods.

      * * * * *

      (c) * * *

      (5) The South Coast Air Quality Management District (SCAQMD) Method 205.1 (which is available by contacting the South Coast AQMD, 21865 Copley Dr., Diamond Bar, CA 91765) may be used to determine the total chromium concentration from hard and decorative chromium electroplating tanks and chromium anodizing tanks.

      * * * * *

    4. Amend Sec. 63.364 by revising paragraph (e) to read as follows:

      Sec. 63.364 Monitoring requirements.

      * * * * *

      (e) Measure and record once per hour the ethylene oxide concentration at the outlet to the atmosphere after any control device according to the procedures specified in Sec. 63.365(c)(1). The owner or operator shall compute and record a 24-hour average daily. The owner or operator will install, calibrate, operate, and maintain a monitor consistent with the requirements of performance specification (PS) 8 or 9 in 40 CFR part 60, Appendix B, to measure ethylene oxide. The daily calibration requirements of section 7.2 of PS-9 or Section 13.1 of PS-8 are required only

      Page 1168

      on days when ethylene oxide emissions are vented to the control device.

      * * * * *

    5. Amend Sec. 63.365 by revising paragraph (b) introductory text to read as follows:

      Sec. 63.365 Test methods and procedures.

      * * * * *

      (b) Efficiency at the sterilization chamber vent. California Air Resources Board (CARB) Method 431 or the following procedures shall be used to determine the efficiency of all types of control devices used to comply with Sec. 63.362(c), sterilization chamber vent standard.

      * * * * *

    6. Amend Sec. 63.565 by revising paragraphs (d)(5), (8), and (10) and (g) to read as follows:

      Sec. 63.565 Test methods and procedures.

      * * * * *

      (d) * * *

      (5) Recovery devices. The average VOC concentration in the vent upstream and downstream of the control device shall be determined using Method 25A or 25B of Appendix A to part 60 of this chapter for recovery devices. The average VOC concentration shall correspond to the volume measurement by taking into account the sampling system response time.

      * * * * *

      (8) Where Method 25, 25A, or 25B is used to measure the percent reduction in VOC, the percent reduction across the combustion or recovery device shall be calculated as follows:

      GRAPHIC TIFF OMITTED TP09JA12.047

      Where:

      R = control efficiency of control device, percent.

      Ei = mass flow rate of VOC at the inlet to the combustion or recovery device as calculated under paragraph (c)(7) of this section, kg/hr.

      Eo = mass flow rate of VOC at the outlet of the combustion or recovery device, as calculated under paragraph (c)(7) of this section, kg/hr.

      * * * * *

      (10) Use of methods other than Method 25, 25A, or 25B shall be validated pursuant to Method 301 of Appendix A to part 63 of this chapter.

      * * * * *

      (g) Baseline outlet VOC concentration. The procedures in this paragraph shall be used to determine the outlet VOC concentration required in Sec. 63.563(b)(4), (6), (7), and (8) for combustion devices except flare, carbon adsorbers, condenser/refrigeration units, and absorbers, respectively, and to monitor the VOC concentration as required in Sec. 63.564(e), (g), (h), and (i). The owner or operator shall use the procedures outlined in Method 25A or 25B. For the baseline VOC concentration, the arithmetic average of the outlet VOC concentration from three test runs from paragraph (d) of this section shall be calculated for the control device. The VOC concentration shall be measured at least every 15 minutes. Compliance testing of VOC CEMS shall be performed using PS 8.

      * * * * *

    7. Amend Sec. 63.750 by revising paragraph (o) to read as follows:

      Sec. 63.750 Test methods and procedures.

      * * * * *

      (o) Inorganic HAP emissions--dry particulate filter certification requirements. Dry particulate filters used to comply with Sec. 63.745(g)(2) or Sec. 63.746(b)(4) must be certified by the filter manufacturer or distributor, paint/depainting booth supplier, and/or the facility owner or operator using method 319 in Appendix A of this part, to meet or exceed the efficiency data points found in Tables 1 and 2, or 3 and 4 of Sec. 63.745 for existing or new sources respectively.

    8. Amend Sec. 63.1251 by revising the definition of ``Process vent'' to read as follows:

      Sec. 63.1251 Definitions.

      * * * * *

      Process vent means a vent from a unit operation or vents from multiple unit operations within a process that are manifolded together into a common header, through which a HAP-containing gas stream is, or has the potential to be, released to the atmosphere. Examples of process vents include, but are not limited to, vents on condensers used for product recovery, bottom receivers, surge control vessels, reactors, filters, centrifuges, and process tanks. Emission streams that are undiluted and uncontrolled containing less than 50 ppmv HAP, as determined through process knowledge that no HAP are present in the emission stream or using an engineering assessment as discussed in Sec. 63.1257(d)(2)(ii); test data using Method 18 of 40 CFR part 60, Appendix A; Method 320 of 40 CFR part 63; or any other test method that has been validated according to the procedures in Method 301 of Appendix A of this part, are not considered process vents. Process vents do not include vents on storage tanks regulated under Sec. 63.1253, vents on wastewater emission sources regulated under Sec. 63.1256, or pieces of equipment regulated under Sec. 63.1255.

      * * * * *

    9. Amend Sec. 63.1511 by revising paragraph (c)(9) as to read follows:

      Sec. 63.1511 Performance test/compliance demonstration general requirements.

      * * * * *

      (c) * * *

      (9) Method 26A for the concentration of HCl. Where a lime-injected fabric filter is used as the control device to comply with the 90 percent reduction standard, the owner or operator must measure the fabric filter inlet concentration of HCl at a point before lime is introduced to the system. Method 26 may be used in place of Method 26A where it can be demonstrated that there are no water droplets in the emission stream. This can be demonstrated by showing that the vapor pressure of water in the emission stream that you are testing is less than the equilibrium vapor pressure of water at the emission stream temperature, and by certifying that the emission stream is not controlled by a wet scrubber.

      * * * * *

      Subpart CCCC--National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast

    10. Subpart CCCC of Part 63 is amended by revising Table 2 to read as follows:

      Page 1169

      Table 2 to Subpart CCCC of Part 63--Requirements for Performance Tests

      As stated in Sec. 63.2161, if you demonstrate compliance by

      monitoring brew ethanol, you must comply with the requirements for

      performance tests in the following table (brew ethanol monitoring only)

      ------------------------------------------------------------------------

      For each fed-batch fermenter

      for which compliance is

      determined by monitoring

      brew ethanol concentration

      and calculating VOC According to the

      concentration in the Using . . . following

      fermenter exhaust according requirements . . .

      to the procedures in Sec.

      63.2161, you must . . .

      ------------------------------------------------------------------------

    11. Measure VOC as propane... Method 25A *, or an You must measure the

      alternative VOC concentration

      validated by EPA in the fermenter

      Method 301 * and exhaust at any

      approved by the point prior to the

      Administrator. dilution of the

      exhaust stream.

      ------------------------------------------------------------------------

      * EPA Test Methods found in Appendix A of 40 CFR part 60.

      Subpart UUUU--National Emission Standards for Hazardous Air Pollutants for Cellulose Products Manufacturing

    12. Amend Subpart UUUU by revising Table 4 to read as follows:

      Table 4 to Subpart UUUU of Part 63--Requirements for Performance Tests

      As required in Sec. Sec. 63.5530(b) and 63.5535(a), (b), (g)(1), and (h)(1), you must conduct performance tests, other initial compliance demonstrations, and CEMS performance evaluations and establish operating limits according to the requirements in the following table:

      ----------------------------------------------------------------------------------------------------------------

      According to the

      For . . . At . . . You must . . . Using . . . following

      requirements . . .

      ----------------------------------------------------------------------------------------------------------------

    13. the sum of all process vents. a. each existing i. select sampling EPA Method 1 or 1A sampling sites

      or new affected port's location in Appendix A to must be located

      source. and the number of 40 CFR Sec. at the inlet and

      traverse points; 63.7(d)(1)(i); outlet to each

      control device;

      ii. determine EPA Method 2, 2A, you may use EPA

      velocity and 2C, 2D, 2F, or 2G Method 2A, 2C,

      volumetric flow in Appendix A to 2D, 2F, or 2G as

      rate; part 60 of this an alternative to

      chapter; using EPA Method

      2, as

      appropriate;

      iii. conduct gas (1) EPA Method 3, you may use EPA

      analysis; and,. 3A, or 3B in Method 3A or 3B

      Appendix A to as an alternative

      part 60 of this to using EPA

      chapter; or, Method 3; or,

      (2) ASME PTC you may use ASME

      19.101981--Part PTC 19.10-1981--

      10; and, Part 10

      (available for

      purchase from

      Three Park

      Avenue, New York,

      NY 10016-5990) as

      an alternative to

      using EPA Method

      3B.

      iv. measure EPA Method 4 in ..................

      moisture content Appendix A to

      of the stack gas. part 60 of this

      chapter.

      ----------------------------------------------------------------------------------------------------------------

    14. the sum of all viscose a. each existing i. measure total (1) EPA Method 15 (a) you must

      process vents. or new viscose sulfide emissions. in Appendix A to conduct testing

      process source. part 60 of this of emissions at

      chapter; or the inlet and

      outlet of each

      control device;

      (b) you must

      conduct testing

      of emissions from

      continuous

      viscose process

      vents and

      combinations of

      batch and

      continuous

      viscose process

      vents at normal

      operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (c) you must

      conduct testing

      of emissions from

      batch viscose

      process vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part; and

      (d) you must

      collect CPMS data

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CPMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration; or

      (2) carbon (a) you must

      disulfide and/or measure emissions

      hydrogen sulfide at the inlet and

      CEMS, as outlet of each

      applicable; control device

      using CEMS;

      Page 1170

      (b) you must

      install, operate,

      and maintain the

      CEMS according to

      the applicable

      performance

      specification (PS-

      7, PS-8, PS-9, or

      PS-15) of 40 CFR

      part 60, Appendix

      B; and

      (c) you must

      collect CEMS

      emissions data at

      the inlet and

      outlet of each

      control device

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CEMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration.

      ----------------------------------------------------------------------------------------------------------------

    15. the sum of all solvent a. each existing i. measure toluene (1) EPA Method 18 (a) you must

      coating process vents. or new cellophane emissions. in Appendix A to conduct testing

      operation. part 60 of this of emissions at

      chapter, or the inlet and

      Method 320 in outlet of each

      appendix A to control device;

      part 63, or (b) you may use

      EPA Method 18 or

      320 to determine

      the control

      efficiency of any

      control device

      for organic

      compounds; for a

      combustion

      device, you must

      use only HAP that

      are present in

      the inlet to the

      control device to

      characterize the

      percent reduction

      across the

      combustion

      device;

      (c) you must

      conduct testing

      of emissions from

      continuous

      solvent coating

      process vents and

      combinations of

      batch and

      continuous

      solvent coating

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (d) you must

      conduct testing

      of emissions from

      batch solvent

      coating process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part; and

      (e) you must

      collect CPMS data

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CPMS operating

      limit during the

      initial

      compliance

      demonstration; or

      (2) ASTM D6420-99. (a) you must

      conduct testing

      of emissions at

      the inlet and

      outlet of each

      control device;

      Page 1171

      (b) you may use

      ASTM D6420-99

      (available for

      purchase from at

      least one of the

      following

      addresses: 100

      Barr Harbor

      Drive, West

      Conshohocken, PA

      19428-2959; or

      University

      Microfilms

      International,

      300 North Zeeb

      Road, Ann Arbor,

      MI 48106) as an

      alternative to

      EPA Method 18

      only where: The

      target

      compound(s) are

      those listed in

      Section 1.1 of

      ASTM D6420-99;

      and the target

      concentration is

      between 150 parts

      per billion by

      volume (ppbv) and

      100 ppmv; for

      target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99, but

      potentially

      detected by mass

      spectrometry, the

      additional system

      continuing

      calibration check

      after each run,

      as detailed in

      Section 10.5.3 of

      the ASTM method,

      must be followed,

      met, documented,

      and submitted

      with the data

      report even if

      there is no

      moisture

      condenser used or

      the compound is

      not considered

      water soluble;

      and for target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99 and not

      amenable to

      detection by mass

      spectrometry,

      ASTM D6420-99

      does not apply;

      (c) you must

      conduct testing

      of emissions from

      continuous

      solvent coating

      process vents and

      combinations of

      batch and

      continuous

      solvent coating

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (d) you must

      conduct testing

      of emissions from

      batch solvent

      coating process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part;

      and,

      (e) you must

      collect CPMS data

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CPMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration.

      ----------------------------------------------------------------------------------------------------------------

    16. the sum of all cellulose a. each existing i. measure total (1) EPA Method 18 (a) you must

      ether process vents. or new cellulose organic HAP in Appendix A to conduct testing

      ether operation. emissions. Part 60 of this of emissions at

      chapter or Method the inlet and

      320 in Appendix A outlet of each

      to Part 63, or control device;

      (b) you may use

      EPA Method 18 or

      320 to determine

      the control

      efficiency of any

      control device

      for organic

      compounds; for a

      combustion

      device, you must

      use only HAP that

      are present in

      the inlet to the

      control device to

      characterize the

      percent reduction

      across the

      combustion

      device;

      Page 1172

      (c) you must

      conduct testing

      of emissions from

      continuous

      cellulose ether

      process vents and

      combinations of

      batch and

      continuous

      cellulose ether

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (d) you must

      conduct testing

      of emissions from

      batch cellulose

      ether process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part; and

      (e) you must

      collect CPMS data

      during the period

      of the initial

      performance test

      and determine the

      CPMS operating

      limit during the

      period of the

      initial

      performance test;

      (2) ASTM D6420-99. (a) you must

      conduct testing

      of emissions at

      the inlet and

      outlet of each

      control device;

      (b) you may use

      ASTM D6420-99

      (available for

      purchase from at

      least one of the

      following

      addresses: 100

      Barr Harbor

      Drive, West

      Conshohocken, PA

      19428-2959; or

      University

      Microfilms

      International,

      300 North Zeeb

      Road, Ann Arbor,

      MI 48106) as an

      alternative to

      EPA Method 18

      only where: The

      target

      compound(s) are

      those listed in

      Section 1.1 of

      ASTM D6420-99;

      and the target

      concentration is

      between 150 ppbv

      and 100 ppmv; for

      target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99, but

      potentially

      detected by mass

      spectrometry, the

      additional system

      continuing

      calibration check

      after each run,

      as detailed in

      Section 10.5.3 of

      the ASTM method,

      must be followed,

      met, documented,

      and submitted

      with the data

      report even if

      there is no

      moisture

      condenser used or

      the compound is

      not considered

      water soluble;

      and for target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99 and not

      amenable to

      detection by mass

      spectrometry,

      ASTM D6420-99

      does not apply;

      target

      concentration is

      between 150 ppbv

      and 100 ppmv for

      target

      compound(s).

      (c) you must

      conduct testing

      of emissions from

      continuous

      cellulose ether

      process vents and

      combinations of

      batch and

      continuous

      cellulose ether

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      Page 1173

      (d) you must

      conduct testing

      of emissions from

      batch cellulose

      ether process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part; and

      (e) you must

      collect CPMS data

      during the period

      of the initial

      performance test

      and determine the

      CPMS operating

      limit during the

      period of the

      initial

      performance test.

      (3) EPA Method 25 (a) you must

      in Appendix A to conduct testing

      Part 60 of this of emissions at

      chapter; or the inlet and

      outlet of each

      control device;

      (b) you may use

      EPA Method 25 to

      determine the

      control

      efficiency of

      combustion

      devices for

      organic

      compounds; you

      may not use EPA

      Method 25 to

      determine the

      control

      efficiency of

      noncombustion

      control devices;

      (c) you must

      conduct testing

      of emissions from

      continuous

      cellulose ether

      process vents and

      combinations of

      batch and

      continuous

      cellulose ether

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (d) you must

      conduct testing

      of emissions from

      batch cellulose

      ether process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part; and

      (e) you must

      collect CPMS data

      during the period

      of the initial

      performance test

      and determine the

      CPMS operating

      limit during the

      period of the

      initial

      performance test;

      or

      (4) EPA Method 25A (a) you must

      in Appendix A to conduct testing

      Part 60 of this of emissions at

      chapter. the inlet and

      outlet of each

      control device;

      (b) you may use

      EPA Method 25A

      if: An exhaust

      gas volatile

      organic matter

      concentration of

      50 ppmv or less

      is required in

      order to comply

      with the emission

      limit; the

      volatile organic

      matter

      concentration at

      the inlet to the

      control device

      and the required

      level of control

      are such as to

      result in exhaust

      volatile organic

      matter

      concentrations of

      50 ppmv or less;

      or because of the

      high control

      efficiency of the

      control device,

      the anticipated

      volatile organic

      matter

      concentration at

      the control

      device exhaust is

      50 ppmv or less,

      regardless of the

      inlet

      concentration;

      Page 1174

      (c) you must

      conduct testing

      of emissions from

      continuous

      cellulose ether

      process vents and

      combinations of

      batch and

      continuous

      cellulose ether

      process vents at

      normal operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535;

      (d) you must

      conduct testing

      of emissions from

      batch cellulose

      ether process

      vents as

      specified in Sec.

      63.490(c),

      except that the

      emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part;

      and,

      (e) you must

      collect CPMS data

      during the period

      of the initial

      performance test

      and determine the

      CPMS operating

      limit during the

      period of the

      initial

      performance test.

      ----------------------------------------------------------------------------------------------------------------

    17. each toluene storage vessel.. a. each existing i. measure toluene (1) EPA Method 18 (a) if venting to

      or new cellophane emissions. in Appendix A to a control device

      operation. Part 60 of this to reduce

      chapter or Method emissions, you

      320 in Appendix A must conduct

      to Part 63; or testing of

      emissions at the

      inlet and outlet

      of each control

      device;

      (b) you may use

      EPA Method 18 or

      320 to determine

      the control

      efficiency of any

      control device

      for organic

      compounds; for a

      combustion

      device, you must

      use only HAP that

      are present in

      the inlet to the

      control device to

      characterize the

      percent reduction

      across the

      combustion

      device;

      (c) you must

      conduct testing

      of emissions from

      continuous

      storage vessel

      vents and

      combinations of

      batch and

      continuous

      storage vessel

      vents at normal

      operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535 for

      continuous

      process vents;

      (d) you must

      conduct testing

      of emissions from

      batch storage

      vessel vents as

      specified in Sec.

      63.490(c) for

      batch process

      vents, except

      that the emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part;

      and,

      (e) you must

      collect CPMS data

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CPMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration; or

      (2) ASTM D6420-99. (a) if venting to

      a control device

      to reduce

      emissions, you

      must conduct

      testing of

      emissions at the

      inlet and outlet

      of each control

      device;

      Page 1175

      (b) you may use

      ASTM D6420-99

      (available for

      purchase from at

      least one of the

      following

      addresses: 100

      Barr Harbor

      Drive, West

      Conshohocken, PA

      19428-2959; or

      University

      Microfilms

      International,

      300 North Zeeb

      Road, Ann Arbor,

      MI 48106) as an

      alternative to

      EPA Method 18

      only where: the

      target

      compound(s) are

      those listed in

      Section 1.1 of

      ASTM D6420-99,

      and the target

      concentration is

      between 150 ppbv

      and 100 ppmv; for

      target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99, but

      potentially

      detected by mass

      spectrometry, the

      additional system

      continuing

      calibration check

      after each run,

      as detailed in

      Section 10.5.3 of

      the ASTM method,

      must be followed,

      met, documented,

      and submitted

      with the data

      report even if

      there is no

      moisture

      condenser used or

      the compound is

      not considered

      water soluble;

      and for target

      compound(s) not

      listed in Section

      1.1 of ASTM D6420-

      99 and not

      amenable to

      detection by mass

      spectrometry,

      ASTM D6420-99

      does not apply;

      (c) you must

      conduct testing

      of emissions from

      continuous

      storage vessel

      vents and

      combinations of

      batch and

      continuous

      storage vessel

      vents at normal

      operating

      conditions, as

      specified in Sec.

      Sec.

      63.7(e)(1) and

      63.5535 for

      continuous

      process vents;

      (d) you must

      conduct testing

      of emissions from

      batch storage

      vessel vents as

      specified in Sec.

      63.490(c) for

      batch process

      vents, except

      that the emission

      reductions

      required for

      process vents

      under this

      subpart supersede

      the emission

      reductions

      required for

      process vents

      under subpart U

      of this part;

      and,

      (e) you must

      collect CPMS data

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CPMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration.

      ----------------------------------------------------------------------------------------------------------------

    18. the sum of all process vents a. each existing i. measure visible (1) EPA Method 22 (a) you must

      controlled using a flare. or new affected emissions. in Appendix A to conduct the flare

      source. Part 60 of this visible emissions

      chapter. test according to

      Sec. 63.11(b).

      ----------------------------------------------------------------------------------------------------------------

    19. equipment leaks.............. a. each existing i. measure leak (1) applicable (a) you must

      or new cellulose rate. equipment leak follow all

      ether operation. test methods in requirements for

      Sec. 63.180; or the applicable

      equipment leak

      test methods in

      Sec. 63.180; or

      (2) applicable (a) you must

      equipment leak follow all

      test methods in requirements for

      Sec. 63.1023. the applicable

      equipment leak

      test methods in

      Sec. 63.1023.

      ----------------------------------------------------------------------------------------------------------------

      Page 1176

    20. all sources of wastewater a. each existing i. measure (1) applicable (a) You must

      emissions. or new cellulose wastewater HAP wastewater test follow all

      ether operation. emissions. methods and requirements for

      procedures in the applicable

      Sec. Sec. wastewater test

      63.144 and methods and

      63.145; or procedures in

      Sec. Sec.

      63.144 and

      63.145; or

      (2) applicable (a) you must

      wastewater test follow all

      methods and requirements for

      procedures in the applicable

      Sec. Sec. waste water test

      63.144 and methods and

      63.145, using procedures in

      ASTM D5790-95 as Sec. Sec.

      an alternative to 63.144 and

      EPA Method 624 in 63.145, except

      Appendix A to that you may use

      Part 163 of this ASTM D5790-95

      chapter. (available for

      purchase from at

      least one of the

      following

      addresses: 100

      Barr Harbor

      Drive, West

      Conshohocken, PA

      19428-2959; or

      University

      Microfilms

      International,

      300 North Zeeb

      Road, Ann Arbor,

      MI 48106) as an

      alternative to

      EPA Method 624,

      under the

      condition that

      this ASTM method

      be used with the

      sampling

      procedures of EPA

      Method 25D or an

      equivalent

      method.

      ----------------------------------------------------------------------------------------------------------------

    21. any emission point........... a. each existing i. conduct a CEMS (1) applicable (a) you must

      or new affected performance requirements in conduct the CEMS

      source using a evaluation. Sec. 63.8 and performance

      CEMS to applicable evaluation during

      demonstrate performance the period of the

      compliance. specification (PS- initial

      7, PS-8, PS-9, or compliance

      PS-15) in demonstration

      Appendix B to according to the

      part 60 of this applicable

      chapter. requirements in

      Sec. 63.8 and

      the applicable

      performance

      specification (PS-

      7, PS-8, PS-9, or

      PS-15) of 40 CFR

      part 60, Appendix

      B;

      (b) you must

      install, operate,

      and maintain the

      CEMS according to

      the applicable

      performance

      specification (PS-

      7, PS-8, PS-9, or

      PS-15) of 40 CFR

      part 60, Appendix

      B; and

      (c) you must

      collect CEMS

      emissions data at

      the inlet and

      outlet of each

      control device

      during the period

      of the initial

      compliance

      demonstration and

      determine the

      CEMS operating

      limit during the

      period of the

      initial

      compliance

      demonstration.

      ----------------------------------------------------------------------------------------------------------------

      Subpart ZZZZ--National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

    22. Amend Subpart ZZZZ by revising Table 4 to read as follows:

      Table 4 to Subpart ZZZZ of Part 63--Requirements for Performance Tests

      As stated in Sec. Sec. 63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following

      requirements for performance tests for stationary RICE

      ----------------------------------------------------------------------------------------------------------------

      Complying with According to the

      For each . . . the requirement You must . . . Using . . . following requirements

      to . . . . . .

      ----------------------------------------------------------------------------------------------------------------

    23. 2SLB, 4SLB, and CI a. Reduce CO i. Measure the O2 (1) Portable CO (a) Using ASTM D6522-

      stationary RICE. emissions. at the inlet and and O2 analyzer. 00 (2005) \a\ (heated

      outlet of the probe not necessary;

      control device; single-point

      and sampling)

      (incorporated by

      reference, see Sec.

      63.14). Measurements

      to determine O2 must

      be made at the same

      time as the

      measurements for CO

      concentration.

      Page 1177

      ii. Measure the (1) Portable CO (

      1. Using ASTM D6522-

      CO at the inlet and O2 analyzer. 00 (2005) \a\ (heated

      and the outlet probe not necessary;

      of the control single-point

      device. sampling)

      (incorporated by

      reference, see Sec.

      63.14) or Method 10

      of 40 CFR part 60,

      Appendix A. The CO

      concentration must be

      at 15 percent O2, dry

      basis.

    24. 4SRB stationary RICE........ a. Reduce i. Sample at the ................. (a) Sampling sites

      formaldehyde centroid of the must be located at

      emissions. exhaust; the inlet and outlet

      of the control

      device.

      ii. Measure O2 at (1) Method 3 or (

      1. Measurements to

        the inlet and 3A or 3B of 40 determine O2

        outlet of the CFR part 60, concentration must be

        control device. Appendix A, or made at the same time

        ASTM Method as the measurements

        D6522-00 (2005) for formaldehyde

        (heated probe concentration.

        not necessary;

        single-point

        sampling).

        iii. Measure (1) Method 4 of (

      2. Measurements to

        moisture content 40 CFR part 60, determine moisture

        at the inlet and Appendix A, or content must be made

        outlet of the Test Method 320 at the same time and

        control device; of 40 CFR part location as the

        and 63, Appendix A, measurements for

        or ASTM D 6348- formaldehyde

    25. concentration.

      iv. Measure (1) Method 320 or (

      1. Formaldehyde

      formaldehyde at 323 of 40 CFR concentration must be

      the inlet and part 63, at 15 percent O2, dry

      the outlet of Appendix A; or basis. Results of

      the control ASTM D6348- this test consist of

      device. 03,\b\ provided the average of the

      in ASTM D6348-03 three 1-hour or

      Annex A5 longer runs.

      (Analyte Spiking

      Technique), the

      percent R must

      be greater than

      or equal to 70

      and less than or

      equal to 130.

    26. Stationary RICE............. a. Limit the i. Sample at the (a) If using a control

      concentration of centroid of the device, the sampling

      formaldehyde in exhaust; site must be located

      the stationary at the outlet of the

      RICE exhaust. control device.

      ii. Determine the (1) Method 3 or (

      1. Measurements to

        O2 concentration 3A or 3B of 40 determine O2

        of the CFR part 60, concentration must be

        stationary RICE Appendix A, or made at the same time

        exhaust at the ASTM Method and location as the

        sampling port D6522-00 (2005) measurements for

        location; (heated probe formaldehyde

        not necessary; concentration.

        single-point

        sampling).

        iii. Measure (1) Method 4 of (

      2. Measurements to

        moisture content 40 CFR part 60, determine moisture

        of the Appendix A, or content must be made

        stationary RICE Test Method 320 at the same time and

        exhaust at the of 40 CFR part location as the

        sampling port 63, Appendix A, measurements for

        location; and, or ASTM D 6348- formaldehyde

    27. concentration.

      Page 1178

      iv. Measure (1) Method 320 or (

      1. Formaldehyde

      formaldehyde at 323 of 40 CFR concentration must be

      the exhaust of part 63, at 15 percent O2, dry

      the stationary Appendix A; or basis. Results of

      RICE. ASTM D6348- this test consist of

      03,\b\ provided the average of the

      in ASTM D6348-03 three 1-hour or

      Annex A5 longer runs.

      (Analyte Spiking

      Technique), the

      percent R must

      be greater than

      or equal to 70

      and less than or

      equal to 130.

      ----------------------------------------------------------------------------------------------------------------

      \a\ You may also use Methods 3A and 10 as options to ASTM-D6522-00 (2005). You may obtain a copy of ASTM-D6522-

      00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr

      Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road,

      Ann Arbor, MI 48106.

      \b\ You may obtain a copy of ASTM-D6348-03 from at least one of the following addresses: American Society for

      Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms

      International, 300 North Zeeb Road, Ann Arbor, MI 48106.

    28. Amend Method 306 of Appendix A to Part 63 by revising Sections 2.2.1, 6.1.4, and 8.0 to read as follows:

      Appendix A to Part 63--Test Methods Pollutant Measurement Methods From Various Waste Media

      * * * * *

      Method 306--Determination of Chromium Emissions From Decorative and Hard Chromium Electroplating and Chromium Anodizing Operations--

      Isokinetic Method

      * * * * *

      2.2.1 Total chromium samples with high chromium concentrations (>=35 microg/L) may be analyzed using inductively coupled plasma emission spectrometry (ICP) at 267.72 nm. Note: The ICP analysis is applicable for this method only when the solution analyzed has a Cr concentration greater than or equal to 35 microg/L or five times the method detection limit as determined according to Appendix B in 40 CFR part 136. Similarly, inductively coupled plasma-mass spectroscopy (ICP-MS) may be used for total chromium analysis provided the procedures for ICP-MS analysis described in Method 6020 or 6020A (EPA Office of Solid Waste, publication SW-846) are followed.

      * * * * *

      6.1.4 Operating and maintenance procedures for the sampling train are described in APTD-0576 of Method 5. Users should read the APTD-0576 document and adopt the outlined procedures. Alternative mercury-free thermometers may be used if the thermometers are, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

      8.0 Sample Collection, Preservation, Holding Times, Storage, and Transport

      Note: Prior to sample collection, consideration should be given to the type of analysis (Cr \+6\ or total Cr) that will be performed. Which analysis option(s) will be performed will determine which sample recovery and storage procedures will be required to process the sample.

      * * * * *

    29. Amend Method 306A of Appendix A to Part 63 by revising Section 8.2 to read as follows:

      Method 306A--Determination of Chromium Emissions From Decorative and Hard Chromium Electroplating and Chromium Anodizing Operations

      * * * * *

      8.2 Sample Recovery. After the train has been transferred to the sample recovery area, disconnect the tubing that connects the jar/

      impingers. The tester shall select either the total Cr or Cr \+6\ sample recovery option. Samples to be analyzed for both total Cr and Cr \+6\ shall be recovered using the Cr \+6\ sample option (Section 8.2.2). Note: Collect a reagent blank sample for each of the total Cr or the Cr \+6\ analytical options. If both analyses (Cr and Cr \+6\) are to be conducted on the samples, collect separate reagent blanks for each analysis. Also, since particulate matter is not usually present at chromium electroplating and/or chromium anodizing operations, it is not necessary to filter the Cr \+6\ samples unless there is observed sediment in the collected solutions. If it is necessary to filter the Cr \+6\ solutions, please refer to Method 0061, Determination of Hexavalent Chromium Emissions from Stationary Sources, Section 7.4, Sample Preparation in SW-846 (see Reference 1).

      * * * * *

    30. Amend Method 308 of Appendix A to Part 63 by revising Section 10.1.3 to read as follows:

      Method 308--Procedure for Determination of Methanol Emission From Stationary Sources

      * * * * *

      10.1.3 Temperature Sensors. Calibrate against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    31. Amend Method 315 of Appendix A to Part 63 by revising Sections 6.1.1 and 10.5 and by redesignating Section 8.11 as 8.1 and revising newly designated section 8.1 to read as follows:

      Method 315--Determination of Particulate and Methylene Chloride Extractable Matter (MCEM) From Selected Sources at Primary Aluminum Production Facilities

      * * * * *

      6.1.1 Sampling train. A schematic of the sampling train used in this method is shown in Figure 5-1, Method 5, 40 CFR part 60, Appendix A. Complete construction details are given in APTD-0581 (Reference 2 in section 17.0 of this method); commercial models of this train are also available. For changes from APTD-0581 and for allowable modifications of the train shown in Figure 5-1, Method 5, 40 CFR part 60, Appendix A, see the following subsections. Note: The operating and maintenance procedures for the sampling train are described in APTD-0576 (Reference 3 in section 17.0 of this method). Since correct usage is important in obtaining valid results, all users should read APTD-0576 and adopt the operating and maintenance procedures outlined in it, unless otherwise specified herein. Alternative mercury-free thermometers may be used if the thermometers are, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application. The use of grease for sealing sampling train components is not recommended because many greases are soluble in methylene chloride. The sampling train consists of the following components:

      * * * * *

      Page 1179

      8.1 Pretest preparation. It is suggested that sampling equipment be maintained according to the procedures described in APTD-0576. Alternative mercury-free thermometers may be used if the thermometers are at a minimum equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

      10.5 Temperature sensors. Use the procedure in Section 10.3 of Method 2, 40 CFR part 60, Appendix A to calibrate in-stack temperature sensors. Dial thermometers, such as are used for the DGM and condenser outlet, shall be calibrated against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    32. Amend Method 316 of Appendix A to Part 63 by revising Section 10.5 to read as follows:

      Method 316--Sampling and Analysis for Formaldehyde Emissions From Stationary Sources in the Mineral Wool and Wool Fiberglass Industries

      * * * * *

      10.5 Temperature gauges: Use the procedure in Section 4.3 of EPA Method 2 to calibrate in-stack temperature gauges. Dial thermometers, such as are used for the dry gas meter and condenser outlet, shall be calibrated against mercury-in-glass thermometers. An alternative mercury-free thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application.

      * * * * *

    33. Amend Method 321 of Appendix A to Part 63 by revising the definition for the term ``Df'' after equation (2) in Section 9.3.1 to read as follows:

      Test Method 321--Measurement of Gaseous Hydrogen Chloride Emissions at Portland Cement Kilns by Fourier Transform Infrared (FTIR) Spectroscopy

      * * * * *

      9.3 * * *

      DF = Dilution Factor (Total flow/Spike flow). Total flow = spike flow plus effluent flow.

      * * * * *

      FR Doc. 2011-31234 Filed 1-6-12; 8:45 am

      BILLING CODE 6560-50-P

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT