Endangered and Threatened Wildlife; 90-Day Finding on a Petition To List Three Manta Rays as Threatened or Endangered Under the Endangered Species Act

Federal Register, Volume 81 Issue 35 (Tuesday, February 23, 2016)

Federal Register Volume 81, Number 35 (Tuesday, February 23, 2016)

Proposed Rules

Pages 8874-8884

From the Federal Register Online via the Government Publishing Office www.gpo.gov

FR Doc No: 2016-03638

=======================================================================

-----------------------------------------------------------------------

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

50 CFR Parts 223 and 224

Docket No. 160105011-6011-01

RIN 0648-XE390

Endangered and Threatened Wildlife; 90-Day Finding on a Petition To List Three Manta Rays as Threatened or Endangered Under the Endangered Species Act

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce.

ACTION: 90-day petition finding; request for information.

-----------------------------------------------------------------------

SUMMARY: We, NMFS, announce a 90-day finding on a petition to list three manta rays, identified as the giant manta ray (Manta birostris), reef manta ray (M. alfredi), and Caribbean manta ray (M. c.f. birostris), range-wide or, in the alternative, any identified distinct population segments (DPSs), as threatened or endangered under the Endangered Species Act (ESA), and to designate critical habitat concurrently with the listing. We find that the petition and information in our files present substantial scientific or commercial information indicating that the petitioned action may be warranted for the giant manta ray and the reef manta ray. We will conduct a status review of these species to determine if the petitioned action is warranted. To ensure that the status review is comprehensive, we are soliciting scientific and commercial information pertaining to these two species from any interested party. We also find that the petition and information in our files does not present substantial scientific or commercial information indicating that the Caribbean manta ray is a taxonomically valid species or subspecies for listing, and, therefore, it does not warrant listing at this time.

DATES: Information and comments on the subject action must be received by April 25, 2016.

ADDRESSES: You may submit comments, information, or data on this document, identified by the code NOAA-NMFS-2016-0014, by either any of the following methods:

Electronic Submissions: Submit all electronic public comments via the Federal eRulemaking Portal. Go to www.regulations.gov/#!docketDetail;D=NOAA-NMFS-2016-0014. Click the ``Comment Now'' icon, complete the required fields, and enter or attach your comments.

Mail: Submit written comments to Maggie Miller, NMFS Office of Protected Resources (F/PR3), 1315 East-West Highway, Silver Spring, MD 20910, USA.

Instructions: Comments sent by any other method, to any other address or individual, or received after the end of the comment period, may not be considered by NMFS. All comments received are a part of the public record and will generally be posted for public viewing on www.regulations.gov without change. All personal identifying information (e.g., name, address, etc.), confidential business information, or otherwise sensitive information submitted voluntarily by the sender will be publicly accessible. NMFS will accept anonymous comments (enter ``N/A'' in the required fields if you wish to remain anonymous).

Copies of the petition and related materials are available on our Web site at http://www.fisheries.noaa.gov/pr/species/fish/manta-ray.html.

FOR FURTHER INFORMATION CONTACT: Maggie Miller, Office of Protected Resources, 301-427-8403.

SUPPLEMENTARY INFORMATION:

Background

On November 10, 2015, we received a petition from Defenders of Wildlife to list the giant manta ray (M. birostris), reef manta ray (M. alfredi) and Caribbean manta ray (M. c.f. birostris) as threatened or endangered under the ESA throughout their respective ranges, or, as an alternative, to list any identified DPSs as threatened or endangered. The petition also states that if the Caribbean manta ray is determined to be a subspecies of the giant manta ray and not a distinct species, then we should consider listing the subspecies under the ESA. However, if we determine that the Caribbean manta ray is neither a species nor a subspecies, then the petition requests that we list the giant manta ray, including all specimens in the Caribbean, Gulf of Mexico and southeastern United States, under the ESA. The petition requests that critical habitat be designated concurrently with listing under the ESA. Copies of the petition are available upon request (see ADDRESSES).

ESA Statutory, Regulatory, and Policy Provisions and Evaluation Framework

Section 4(b)(3)(A) of the ESA of 1973, as amended (16 U.S.C. 1531 et seq.), requires, to the maximum extent practicable, that within 90 days of receipt of a petition to list a species as threatened or endangered, the Secretary of Commerce make a finding on whether that petition presents substantial scientific or commercial information indicating that the petitioned action may be warranted, and to promptly publish such finding in the Federal Register (16 U.S.C. 1533(b)(3)(A)). When it is found that substantial scientific or commercial information in a petition indicates the petitioned action may be warranted (a ``positive 90-day finding''), we are required to promptly commence a review of the status of the species concerned during which we will conduct a comprehensive review of the best available scientific and commercial information. In such cases, we conclude the review with a finding as to whether, in fact, the petitioned action is warranted within 12 months of receipt of the petition. Because the finding at the 12-month stage is based on a more thorough review of the available information, as compared to the narrow scope of review at the 90-day stage, a ``may be warranted'' finding does not prejudge the outcome of the status review.

Under the ESA, a listing determination may address a species, which is defined to also include subspecies and, for any vertebrate species, any DPS that interbreeds when mature (16 U.S.C. 1532(16)). A joint NMFS-U.S. Fish and Wildlife Service (USFWS) (jointly, ``the Services'') policy clarifies the agencies' interpretation of the phrase ``distinct population segment'' for the purposes of listing,

Page 8875

delisting, and reclassifying a species under the ESA (61 FR 4722; February 7, 1996). A species, subspecies, or DPS is ``endangered'' if it is in danger of extinction throughout all or a significant portion of its range, and ``threatened'' if it is likely to become endangered within the foreseeable future throughout all or a significant portion of its range (ESA sections 3(6) and 3(20), respectively, 16 U.S.C. 1532(6) and (20)). Pursuant to the ESA and our implementing regulations, we determine whether species are threatened or endangered based on any one or a combination of the following five section 4(a)(1) factors: The present or threatened destruction, modification, or curtailment of habitat or range; overutilization for commercial, recreational, scientific, or educational purposes; disease or predation; inadequacy of existing regulatory mechanisms; and any other natural or manmade factors affecting the species' existence (16 U.S.C. 1533(a)(1), 50 CFR 424.11(c)).

ESA-implementing regulations issued jointly by NMFS and USFWS (50 CFR 424.14(b)) define ``substantial information'' in the context of reviewing a petition to list, delist, or reclassify a species as the amount of information that would lead a reasonable person to believe that the measure proposed in the petition may be warranted. In evaluating whether substantial information is contained in a petition, the Secretary must consider whether the petition: (1) Clearly indicates the administrative measure recommended and gives the scientific and any common name of the species involved; (2) contains detailed narrative justification for the recommended measure, describing, based on available information, past and present numbers and distribution of the species involved and any threats faced by the species; (3) provides information regarding the status of the species over all or a significant portion of its range; and (4) is accompanied by the appropriate supporting documentation in the form of bibliographic references, reprints of pertinent publications, copies of reports or letters from authorities, and maps (50 CFR 424.14(b)(2)).

At the 90-day finding stage, we evaluate the petitioners' request based upon the information in the petition including its references and the information readily available in our files. We do not conduct additional research, and we do not solicit information from parties outside the agency to help us in evaluating the petition. We will accept the petitioners' sources and characterizations of the information presented if they appear to be based on accepted scientific principles, unless we have specific information in our files that indicates the petition's information is incorrect, unreliable, obsolete, or otherwise irrelevant to the requested action. Information that is susceptible to more than one interpretation or that is contradicted by other available information will not be dismissed at the 90-day finding stage, so long as it is reliable and a reasonable person would conclude it supports the petitioners' assertions. In other words, conclusive information indicating the species may meet the ESA's requirements for listing is not required to make a positive 90-day finding. We will not conclude that a lack of specific information alone negates a positive 90-day finding if a reasonable person would conclude that the unknown information itself suggests an extinction risk of concern for the species at issue.

To make a 90-day finding on a petition to list a species, we evaluate whether the petition presents substantial scientific or commercial information indicating the subject species may be either threatened or endangered, as defined by the ESA. First, we evaluate whether the information presented in the petition, along with the information readily available in our files, indicates that the petitioned entity constitutes a ``species'' eligible for listing under the ESA. Next, we evaluate whether the information indicates that the species faces an extinction risk that is cause for concern; this may be indicated in information expressly discussing the species' status and trends, or in information describing impacts and threats to the species. We evaluate any information on specific demographic factors pertinent to evaluating extinction risk for the species (e.g., population abundance and trends, productivity, spatial structure, age structure, sex ratio, diversity, current and historical range, habitat integrity or fragmentation), and the potential contribution of identified demographic risks to extinction risk for the species. We then evaluate the potential links between these demographic risks and the causative impacts and threats identified in section 4(a)(1).

Information presented on impacts or threats should be specific to the species and should reasonably suggest that one or more of these factors may be operative threats that act or have acted on the species to the point that it may warrant protection under the ESA. Broad statements about generalized threats to the species, or identification of factors that could negatively impact a species, do not constitute substantial information indicating that listing may be warranted. We look for information indicating that not only is the particular species exposed to a factor, but that the species may be responding in a negative fashion; then we assess the potential significance of that negative response.

Many petitions identify risk classifications made by nongovernmental organizations, such as the International Union on the Conservation of Nature (IUCN), the American Fisheries Society, or NatureServe, as evidence of extinction risk for a species. Risk classifications by other organizations or made under other Federal or state statutes may be informative, but such classification alone may not provide the rationale for a positive 90-day finding under the ESA. For example, as explained by NatureServe, their assessments of a species' conservation status do ``not constitute a recommendation by NatureServe for listing under the U.S. Endangered Species Act'' because NatureServe assessments ``have different criteria, evidence requirements, purposes and taxonomic coverage than government lists of endangered and threatened species, and therefore these two types of lists should not be expected to coincide'' (http://www.natureserve.org/prodServices/pdf/NatureServeStatusAssessmentsListing-Dec%202008.pdf). Additionally, species classifications under IUCN and the ESA are not equivalent; data standards, criteria used to evaluate species, and treatment of uncertainty are also not necessarily the same. Thus, when a petition cites such classifications, we will evaluate the source of information that the classification is based upon in light of the standards on extinction risk and impacts or threats discussed above.

Taxonomy of the Petitioned Manta Rays

The petition identifies three manta ray ``species'' as eligible for listing under the ESA: The giant manta ray (M. birostris), reef manta ray (M. alfredi), and Caribbean manta ray (M. c.f. birostris). Manta is one of two genera under the family Mobulidae, the second being Mobula (commonly referred to as ``devil rays''). Collectively, manta and devil rays are referred to as mobulid rays and are often confused with one another. Until recently, all manta rays were considered to be a single species known as Manta birostris (Walbaum 1792). However, in 2009, Marshall et al. (2009) provided substantial evidence to support splitting the monospecific Manta genus into two distinct species. Based on new morphological and meristic data, the authors confirmed the presence of two visually distinct

Page 8876

species: Manta birostris and Manta alfredi (Krefft 1868). Manta birostris is the more widely distributed and oceanic of the two species, found in tropical to temperate waters worldwide and common along productive coastlines, particularly off seamounts and pinnacles (Marshall et al. 2009; CITES 2013). Manta alfredi is more commonly observed inshore in tropical waters, found near coral and rocky reefs and also along productive coastlines. It primarily occurs throughout the Indian Ocean and in the eastern and south Pacific, with only a few reports of the species in Atlantic waters (off the Canary Islands, Cape Verde Islands and Senegal).While both species are wide-ranging, and are even sympatric in some locations, Marshall et al. (2009) provides a visual key to differentiate these two species based on coloration, dentition, denticle and spine morphology, size at maturity, and maximum disc width. For example, in terms of coloration, M. birostris can be distinguished by its large, white, triangular shoulder patches that run down the middle of its dorsal surface, in a straight line parallel to the edge of the upper jaw. The species also has dark (black to charcoal grey) mouth coloration, medium to large black spots that occur below its fifth gill slits, and a grey V-shaped colored margin along the posterior edges of its pectoral fins (Marshall et al. 2009). In contrast, M. alfredi has pale to white shoulder patches where the anterior margin spreads posteriorly from the spiracle before curving medially, a white to light grey mouth, small dark spots that are typically located in the middle of the abdomen, in between the five gill slits, and dark colored bands on the posterior edges of the pectoral fins that only stretch mid-way down to the fin tip (Marshall et al. 2009). The separation of these two manta species appears to be widely accepted by both taxonomists (with Marshall et al. (2009) published in the international animal taxonomist journal, Zootaxa) and international scientific bodies (Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and Food and Agriculture Organization of the United Nations (FAO); see CITES (2013) and FAO (2013)), and, as such, we consider both M. birostris and M. alfredi to be taxonomically distinct species eligible for listing under the ESA.

The petitioners identify a third manta ray species, which they refer to as M. cf. birostris, or the ``Caribbean manta ray,'' based on their interpretation of data from Clark (2001). Clark (2001) is a Master's thesis that examined the population structure of M. birostris from the Pacific and Atlantic Oceans. This study was conducted prior to the splitting of the monospecific Manta genus, and, as such, all of the manta rays identified in the study are referred to as M. birostris. However, the petitioners argue that the genetic differences between populations discussed in Clark (2001) provide support for the differentiation of the Caribbean manta ray from M. birostris. Clark (2001) examined sequences of mitochondrial DNA (mtDNA) from 18 manta ray individuals and calculated the genetic divergence among haplotypes. Based on these estimates, Clark (2001) divided the 18 individuals into three operational taxonomic units: A Western Pacific unit (which included samples from Hawaii, French Frigate Shoals, Yap, and Fiji; n=5), a Baja unit (which included samples from two individuals from the Gulf of Mexico; n=10), and a Gulf of Mexico unit (n=3). The results showed low genetic divergence among samples from the Western Pacific (0.038-0.076 percent sequence divergence), hence their taxonomic grouping. Based on findings and distribution maps from Marshall et al. (2009), these samples were all likely taken from M. alfredi individuals. Similarly, the Baja samples were likely all from M. birostris individuals. Clark (2001) notes that the mtDNA haplotypes from the five individuals collected in the Gulf of Mexico formed two groups with percent sequence divergence values that were similar in magnitude to estimates obtained from geographically distinct samples. In other words, the mtDNA haplotypes from three of the Gulf of Mexico individuals were as distant genetically from the other two Gulf of Mexico individuals (0.724-0.80 percent sequence divergence) as samples from the Western Pacific unit were compared to the Baja unit (0.609-

0.762 percent). Furthermore, the two Gulf of Mexico samples, which had identical sequences, were similar genetically to haplotype samples from Baja (0.076-0.228 percent sequence divergence), with phylogenetic analysis strongly supporting the pooling of these samples with the Baja taxonomic unit. The other Gulf of Mexico group (n=3) showed percent sequence divergence values ranging from 0.647-0.838 percent when compared to the Baja taxonomic unit and to the Western Pacific unit. The most parsimonious tree representing the phylogenic relationship among the mtDNA haplotypes had three well-supported clades that differed from one another by at least 14 nucleotide substitutions: A clade consisting of clustered western Pacific samples, the three Gulf of Mexico samples as another clade, and the third clade represented by the samples from Baja and the two genetically similar Gulf of Mexico samples.

The petitioners argue that the Gulf of Mexico clade, noted above, represents a third, distinct species of manta ray, which they identify as Manta c.f. birostris. While the genetic divergence between the Gulf of Mexico population and the Baja population (assumed to be M. birostris) was high relative to the intrapopulation values, this analysis was based on an extremely low sample size, with only three samples from the Gulf of Mexico, and thus cannot be reasonably relied upon to support the identification of a new species of manta ray. It is also important to note that this study analyzed only mtDNA. At best, this mtDNA evidence suggests that M. birostris females in the Gulf of Mexico may be philopatric (i.e., returning or remaining near its home area); however, mtDNA does not alone describe population structure. Because mtDNA is maternally inherited, differences in mtDNA haplotypes between populations do not necessarily mean that the populations are substantially reproductively isolated from each other because they do not provide any information on males. As demonstrated in previous findings, in species where female and male movement patterns differ (such as philopatric females but wide-ranging males), analysis of mtDNA may indicate discrete populations, but analysis of nuclear (or bi-

parentally inherited) DNA could show homogenous populations as a result of male-mediated gene flow (see e.g., loggerhead sea turtle, 68 FR 53947, September 15, 2003, and sperm whale, 78 FR 68032, November 13, 2013). Although very little is known about the reproductive behavior of the species, the available information suggests that M. birostris is highly migratory, with males potentially capable of reproducing with females in different populations. Manta birostris is a cosmopolitan species, and in the western Atlantic has been documented as far north as Rhode Island and as far south as Uruguay. Marshall et al. (2009) note that the available information indicates that M. birostris is more oceanic than M. alfredi, and undergoes significant seasonal migrations. In a tracking study of six M. birostris individuals from off Mexico's Yucatan peninsula, Graham et al. (2012) calculated a maximum distance travelled of 1,151 km (based on cumulative straight line distance

Page 8877

between locations), further confirming that the species is capable of fairly long-distance migrations. As such, it does not seem unreasonable to suggest that males from one M. birostris population may breed with females from other populations. We highlight the fact that all of the Gulf of Mexico samples from the Clark (2001) study were taken from the same area, the Flower Garden Banks National Marine Sanctuary, indicating significant overlap and potential for interchange of individuals between M. birostris populations, at least in the western Atlantic. In other words, without nuclear DNA analyses, or additional information on the mating and reproductive behavior of the species, we cannot confidently make conclusions regarding the genetic discreteness or reproductive isolation of the M. birostris populations in the western Atlantic. Therefore, at this time, we do not find that the petition's interpretation of the Clark (2001) results is substantial scientific or commercial information to indicate that M. c.f. birostris is a distinct species under the ESA. Furthermore, based on the conclusions from the widely accepted recent manta ray taxonomy publication (Marshall et al. 2009), to which we defer as the authority and best available scientific information on this topic, there is not enough information at this time to conclude that M. c.f. birostris is a distinct manta ray species. While Marshall et al. (2009) noted the possibility of this third, putative species, the authors were similarly limited by sample size. The authors examined only one physical specimen (an immature male killed in 1949) and concluded that ``further examination of specimens is necessary to clarify the taxonomic status of this variant manta ray.'' The authors proceed to state:

At present there is not enough empirical evidence to warrant the separation of a third species of Manta. At minimum, additional examination of dead specimens of Manta sp. cf. birostris are necessary to clarify the taxonomic status of this variant manta ray. Further examinations of the distribution of Manta sp. cf. birostris, as well as, studies of its ecology and behaviour within the Atlantic and Caribbean are also recommended (Marshall et al. 2009).

We would also like to note that Clark (2001) was cited by Marshall et al. (2009), and, as such, we assume the authors reviewed this paper prior to their conclusions regarding the taxonomy of the manta ray species. Given the above information and analysis, we do not find that information contained in our files or provided by the petitioner presents substantial scientific or commercial information indicating that M. c.f. birostris, referred to as the ``Caribbean manta ray'' in the petition, is a valid manta ray species for listing under the ESA. As such, we will consider the information presented in the petition for the Caribbean manta ray as pertaining to the species M. birostris, as requested by the petitioner. We, therefore, proceed with our evaluation of the information in the petition to determine if this information indicates that M. birostris (referred henceforth as the giant manta ray) and M. alfredi (referred henceforth as the reef manta ray) may be warranted for listing throughout all or a significant portion of their respective ranges under the ESA.

Range, Distribution and Life History

Manta birostris

The giant manta ray is a circumglobal species found in temperate to tropical waters (Marshall et al. 2009). In the Atlantic, it ranges from Rhode Island to Uruguay in the west and from the Azores Islands to Angola in the east. The species is also found throughout the Indian Ocean, including off South Africa, within the Red Sea, around India and Indonesia, and off western Australia. In the Pacific, the species is found as far north as Mutsu Bay, Aomori, Japan, south to the eastern coast of Australia and the North Island of New Zealand (Marshall et al. 2011a; Couturier et al. 2015). It has also been documented off French Polynesia and Hawaii, and in the eastern Pacific, its range extends from southern California south to Peru (Marshall et al. 2009; Mourier 2012; CITES 2013).

The species is thought to spend the majority of its time in deep water, but migrates seasonally to productive coastal areas, oceanic island groups, pinnacles and seamounts (Marshall et al. 2009; CITES 2013). Giant manta rays have been observed visiting cleaning stations on shallow reefs (i.e., locations where manta rays will solicit cleaner fish, such as wrasses, shrimp, and gobies, to remove parasitic copepods and other unwanted materials from their body) and are occasionally observed in sandy bottom areas and seagrass beds (Marshall et al. 2011a). While generally known as a solitary species, the giant manta ray has been sighted in large aggregations for feeding, mating, or cleaning purposes (Marshall et al. 2011a). In parts of the Atlantic and Caribbean, there is evidence that some M. birostris populations may exhibit differences in fine-scale and seasonal habitat use (Marshall et al. 2009).

The general life history characteristics of the giant manta ray are that of a long-lived and slow-growing species, with extremely low reproductive output (Marshall et al. 2011a; CITES 2013). The giant manta ray can grow to over 7 meters (measured by wingspan, or disc width (DW)) with anecdotal reports of the species reaching sizes of up to 9 m DW, and longevity estimated to be at least 40 years old (Marshall et al. 2009; Marshall et al. 2011a). Size at maturity for M. birostris varies slightly throughout its range, with males estimated to mature around 3.8-4 m DW and females at around 4.1-4.7 m DW (White et al. 2006; Marshall et al. 2009). Generally, maturity appears to occur at around 8-10 years (Marshall et al. 2011a; CITES 2013). The giant manta ray is viviparous (i.e., gives birth to live young), with a gestation period of 10-14 months. Manta rays have among the lowest fecundity of all elasmobranchs, typically giving birth to only one pup on average every 2-3 years, which translates to around 5-15 pups total over the course of a female manta ray's lifetime (Couturier et al. 2012; CITES 2013).

Manta rays are filter-feeders that feed almost entirely on plankton. In a tracking study of M. birostris, Graham et al. (2012) noted that the species exhibited plasticity in its diet, with the ability to switch between habitat and prey types, and fed on three major prey types: Copepods (occurring in eutrophic waters), chaetognaths (predatory marine worms that feed on copepods), and fish eggs (occurring in oligotrophic waters). Because manta rays are large filter-feeders that feed low in the food chain, they can potentially be used as indicator species that reflect the overall health of the ecosystem (CITES 2013).

Manta alfredi

The reef manta ray is primarily observed in tropical and subtropical waters. It is widespread throughout the Indian Ocean, from South Africa to the Red Sea, and off Thailand and Indonesia to Western Australia. In the western Pacific, its range extends from the Yaeyama Islands, Japan in the north to the Solitary Islands, Australia in the south, and as far east as French Polynesia and the Hawaiian Islands (Marshall et al. 2009; Mourier 2012). Reef manta rays have not been found in the eastern Pacific, and are rarely observed in the Atlantic, with only a few historical reports or photographs of M. alfredi from off the Canary Islands, Cape Verde Islands, and Senegal (Marshall et al. 2009).

In contrast to the giant manta ray, M. alfredi is thought to be more of a resident species, commonly observed inshore, around coral and rocky reefs,

Page 8878

productive coastlines, tropical island groups, atolls, and bays (Marshall et al. 2009). According to Marshall et al. (2009), the species tends to exhibit smaller home ranges, philopatry, and shorter seasonal migrations compared to M. birostris. However, recent tracking studies, while showing evidence of site fidelity (Couturier et al. 2011; Deakos et al. 2011), also indicate that M. alfredi travels greater distances than previously thought (e.g., >700 km), with distances similar to those exhibited by M. birostris (Convention on Migratory Species (CMS) 2014). Braun et al. (2014) also observed diel behavior in M. alfredi whereby the manta rays occupy shallower waters (such as reef cleaning stations and feeding grounds; max) was estimated to be 0.116, which is among the lowest calculated for chondrichthyan species and is actually more similar to those estimates calculated for marine mammal species (Croll et al. 2015). Productivity (r) was calculated to be 0.029 (Dulvy et al. 2014). When compared to the productivity parameters and criteria in Musick (1999), manta rays can be characterized as having ``very low'' productivity (

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT